<正>Dear Editor,Cumulative evidence supports the role of early-life viral infections,especially respiratory syncytial virus(RSV)and human rhinovirus(HRV),as major antecedents of childhood asthma(Lemanske,2002;Jackson et al.,2008).In this study,the x TAG respiratory viral panel FAST(RVP FAST)assay,a multiplex polymerase chain reaction(PCR)-based method(Arens et al.,2010;BaladaLlasat et al.,2011;Gharabaghi et al.,2011;Selvaraju,2012),was used to investigate the association of infec- 相似文献
Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The “gut-liver axis” closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT).
Methods
The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis.
Principal Findings
Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum.
Conclusion
Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the “gut-liver axis”. 相似文献
We present a THz emission enhancement of 41 times at 0.92 THz from a metasurface made of T-shaped resonators excited in a quasi-near-field zone. Such a metasurface has an intrinsic transmission minimum with Q factor of 4 at 1.25 THz under far-field excitation. When this metasurface is coupled onto the backside of a 625-μm-thick photoconductive emitter, the metasurface is below the Fraunhofer distance to the excitation source. As such, one broad enhancement around 0.47 THz and another extremely narrow enhancement at 0.92 THz in the emission spectrum are observed owing to a quasi-near-field excitation. Theoretically, the Q factor of the latter is up to 307, which is limited by the spectral resolution in experiment. The numerical simulations indicate that the T-shaped resonators serve as an array of plasmonic antennas resulting in the aforementioned emission enhancement of THz radiation.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate. 相似文献
Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater. 相似文献
Recently, it was identified that Pseudomonas aeruginosa competes with rival cells to gain a growth advantage using a novel mechanism that includes two interrelated processes as follows: employing type VI secretion system (T6SS) virulence effectors to lyse other bacteria, and at the same time producing specialized immunity proteins to inactivate their cognate effectors for self-protection against mutual toxicity. To explore the structural basis of these processes in the context of functional performance, the crystal structures of the T6SS virulence effector Tse1 and its complex with the corresponding immunity protein Tsi1 were determined, which, in association with mutagenesis and Biacore analyses, provided a molecular platform to resolve the relevant structural questions. The results indicated that Tse1 features a papain-like structure and conserved catalytic site with distinct substrate-binding sites to hydrolyze its murein peptide substrate. The immunity protein Tsi1 interacts with Tse1 via a unique interactive recognition mode to shield Tse1 from its physiological substrate. These findings reveal both the structural mechanisms for bacteriolysis and the self-protection against the T6SS effector Tse1. These mechanisms are significant not only by contributing to a novel understanding of niche competition among bacteria but also in providing a structural basis for antibacterial agent design and the development of new strategies to fight P. aeruginosa. 相似文献
The aim of this study is to investigate the expression of tumor-associated macrophages (TAMs) M1, M2 phenotypic in human glioma tissues, and to explore the clinical significance and prognostic value of TAMs in glioma patients. A total of 50 glioma samples were obtained from patients diagnosed in our hospital from 2007 to 2010. Clinical follow-up was conducted via return visits and telephone interviews after discharge. Progression free survival (PFS) was calculated based on tumor progression by MRI and CT examination from the primary operation. Overall survival (OS) time was calculated from the initial surgical operation date to end date of follow-up or death. Kaplan–Meier methodology was used to evaluate the survival of patients and log-rank test for comparing differences between groups. The expression levels of CD16 and CD206 were investigated in the 4 μm serial paraffin sections by immunohistochemistry. M1-type macrophages filtrated in all the grades of glioma samples, and the lower expression level was associated with high grade glioma. A negative correlation was found between WHO pathological grades and the expression of M1-type macrophages by Spearman correlation analysis. M2-type macrophages filtrated in all the grades of glioma samples with the higher expression level associated with high grade glioma. A positive correlation was found between WHO pathological grades and the expression of M2-type macrophages by Spearman correlation analysis. The PFS and OS among patients with high levels of M1-type macrophages (CD16+++) were significantly higher than those with less expression. The PFS and OS among patients with high levels of M2-type macrophages (CD206+++) were significantly lower than those with low expression. M1-type macrophages may inhibit the tumor growth and improve the therapeutic outcome of glioma patients. M2 ratios are associated with tumor proliferation and poor prognosis. TAMs phenotypes of glioma samples are the potential biomarkers in assessing the degree of malignancy, tumor invasion, and patient prognosis in clinic. 相似文献