首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31276篇
  免费   2351篇
  国内免费   2278篇
  35905篇
  2024年   69篇
  2023年   437篇
  2022年   1075篇
  2021年   1762篇
  2020年   1163篇
  2019年   1558篇
  2018年   1419篇
  2017年   997篇
  2016年   1432篇
  2015年   1986篇
  2014年   2384篇
  2013年   2591篇
  2012年   2825篇
  2011年   2551篇
  2010年   1487篇
  2009年   1376篇
  2008年   1613篇
  2007年   1422篇
  2006年   1163篇
  2005年   909篇
  2004年   749篇
  2003年   715篇
  2002年   541篇
  2001年   485篇
  2000年   460篇
  1999年   429篇
  1998年   265篇
  1997年   254篇
  1996年   253篇
  1995年   229篇
  1994年   218篇
  1993年   150篇
  1992年   199篇
  1991年   180篇
  1990年   126篇
  1989年   98篇
  1988年   82篇
  1987年   69篇
  1986年   39篇
  1985年   44篇
  1984年   24篇
  1983年   30篇
  1982年   16篇
  1981年   18篇
  1980年   7篇
  1979年   5篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
F plasmid TraM, an autoregulatory homotetramer, is essential for F plasmid bacterial conjugative transfer, one of the major mechanisms for horizontal gene dissemination. TraM cooperatively binds to three sites (sbmA, -B, and -C) near the origin of transfer in the F plasmid. To examine whether or not tetramerization of TraM is required for autoregulation and F conjugation, we used a two-plasmid system to screen for autoregulation-defective traM mutants generated by random PCR mutagenesis. A total of 72 missense mutations in TraM affecting autoregulation were selected, all of which also resulted in a loss of TraM function during F conjugation. Mutational analysis of TraM defined three regions important for F conjugation, including residues 3-10 (region I), 31-53 (region II), and 80-121 (region III); in addition, residues 3-47 were also important for the immunoreactivity of TraM. Biochemical analysis of mutant proteins indicated that region I defined a DNA binding domain that was not involved in tetramerization, whereas regions II and III were important for both tetramerization and efficient DNA binding. Mutations in region III affected the cooperativity of binding of TraM to sbmA, -B, and -C. Our results suggest that tetramerization is important for specific DNA binding, which, in turn, is essential for traM autoregulation and F conjugation. These findings support the hypothesis that TraM functions as a "signaling" factor that triggers DNA transport during F conjugation.  相似文献   
992.
Zhao QT  Yue SQ  Cui Z  Wang Q  Cui X  Zhai HH  Zhang LH  Dou KF 《Life sciences》2007,80(5):484-492
Angiogenesis plays a crucial role in tumor development and growth. The present study was carried out to investigate the potential involvement of the cyclooxygenase-2 (Cox-2) pathway in the regulation of angiogenesis in hepatocellular carcinoma (HCC). We inhibited Cox-2 expression in HCC cell line HuH-7 by selective Cox-2 inhibitor (SC-58635) or Cox-2 siRNA. Conditioned media (CMs) from HuH-7 cells were used in angiogenic assays in vitro and in vivo. Compared with CMs from untreated and negative siRNA treated HuH-7 cells, CMs from SC-58635 and Cox-2 siRNA treated HuH-7 dramatically suppressed the proliferation, migration, and differentiation of human umbilical vein endothelial cells (HUVECs) in vitro and neovascularization in vivo. These inhibitory effects could be partially reversed by the addition of exogenous PGE2 to CMs. Furthermore, Cox-2 inhibition by SC-58635 resulted in PGE2 reduction accompanied by the down-regulation of four PGE2 receptor (EP receptor) subtypes. Treatment with SC-58635 led to the down-expression of proangiogenic factors such as VEGF, HGF, FGF2, ANGPT1 and ANGPT2 in HCC. An approximately 78% reduction of VEGF level has been found in the CM from SC-58635 treated HuH-7. Our results suggest an involvement of Cox-2 in the control of HCC-associated angiogenesis. PGE2 as a vital angiogenic factor may act directly on endothelial cells to promote HuH-7-stimulated angiogenic process. Moreover, Cox-2/PGE2/EP/VEGF pathway possibly also contributes to tumor angiogenesis in HCC. This study provides the rationale for clinical studies of Cox-2 inhibitors on the treatment or chemoprevention of HCC.  相似文献   
993.
This study attempted to investigate the time course of meiotic progression after transferring primary spermatocyte (PS) into ooplasm at different maturing stages. In present experiments, PSs were introduced into maturing ooplasts or oocytes by electrofusion. Higher fusion rate was obtained by phytohemagglutinin (PHA) agglutination than by perivitelline space (PVS) insertion. When the ooplasms prepared at 0, 2, 5, and 8.5 hr of in vitro maturation (IVM) were used as recipients and PSs were used as donors, the reconstructed cells extruded the first polar body (PB1) approximately 8.5, 7, 5.5, and 3 hr after electrofusion, respectively. Especially, when ooplasm cultured for 8.5 hr in vitro after GV removal was fused with PS, the PB1 was emitted 7-11 hr after electrofusion. Additionally, the PB1 extrusions of GV and pro-MI oocytes fertilized with PSs were 2.5 hr earlier than control oocytes. The results suggest that (1) PSs undergo the first meiosis in different time courses when introduced into ooplasm at different maturing stages; (2) GV material plays an important role in determining the timing of PB1 extrusion; and (3) first meiotic division of GV and pro-MI oocytes can be accelerated by introducing PS.  相似文献   
994.
To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.  相似文献   
995.
Development of the fluorescent pH detection method is promising due to the sensitivity, easy operation, and low‐cost, etc. However, traditional organic fluorophores have still some disadvantages such as the tedious preparation and purification as well as low photostability and water solubility, which limits the rapid detection application. Semiconductor quantum dots (QDs) have recently risen to prominence as an alternative for organic fluorophores in fluorescence analysis by virtue of their convenient synthesis and superior optical properties. In this study, we report on sodium 4‐mercaptophenolate functionalized CdSe/ZnS QDs (denoted as ?OPhS‐QDs), which can serve as a selective “on–off” fluorescence probe for aqueous media pH. ?OPhS‐QDs exhibit strong fluorescence in near neutral medium. As a Lewis organic base, ?OPhS‐ moieties on QDs surface easily binds to proton under acidic conditions to yield 4‐mercaptophenol capped QDs (i.e. HOPhS‐QDs), which acts as an efficient hole trapper. As a result, the QDs photoluminescence (PL) is switched off. Under optimal conditions, the present probe exhibits a good linear relationship between fluorescence response and pH values in the pH range 3.0–5.2. Furthermore, the present probe exhibits a high selectivity for proton over other common cations and has been successfully used for pH detection in real water samples.  相似文献   
996.
The prevalence of SARS-CoV-2 variants of concern (VOCs) is still escalating throughout the world. However, the level of neutralization of the inactivated viral vaccine recipients’ sera and convalescent sera against all VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) remains to be lack of comparative analysis. Therefore, we constructed pseudoviruses of five VOCs using a lentiviral-based system and analyzed their viral infectivity and neutralization resistance to convalescent and BBIBP-CorV vaccinee serum at different times. Our results show that, compared with the wild-type strain (WT), five VOC pseudoviruses showed higher infection, of which B.1.617.2 and B.1.1.529 variant pseudoviruses exhibited higher infection rates than wild-type or other VOC strains, respectively. Sera from 10 vaccinated individuals at the 1, 3 and 5-month post second dose or from 10 convalescent at 14 and 200 days after discharge retained neutralizing activity against all strains but exhibited decreased neutralization activity significantly against the five VOC variant pseudoviruses over time compared to WT. Notably, 100% (30/30) of the vaccinee serum samples showed more than a 2.5-fold reduction in neutralizing activity against B.1.1.529, and 90% (18/20) of the convalescent serum samples showed more than 2.5-fold reduction in neutralization against B.1.1.529. These findings demonstrate the reduced protection against the VOCs in vaccinated and convalescent individuals over time, indicating that it is necessary to have a booster shot and develop new vaccines capable of eliciting broad neutralization antibodies.  相似文献   
997.
998.
Solution‐processed perovskite solar cells have great potential for low‐cost roll‐to‐roll fabrication. However, the degradation of aged precursor solutions will become a critical obstacle to mass production. In this report, a small molecule (ITIC‐Th) is employed to stabilize the perovskite precursor solution containing mixed cations and halides. It is found that ITIC‐Th can effectively suppress the formation of yellow δ‐phase in the films made from aged precursor solutions. Consequently, the devices fabricated from the aged precursor solution with ITIC‐Th experience much less efficiency drop with the increase of the precursor aging time—from 19.20% (fresh) to 16.55% (39 d), compared with the devices made from conventional precursor solutions dropping from 18.07% (fresh) to 1.76% (39 d). The characterizations suggest that ITIC‐Th is beneficial for CH3NH3+ cations to be incorporated into the crystal structure, facilitating the formation of perovskite phase. Furthermore, the presence of ITIC‐Th in the perovskite thin film gives rise to additional photocurrent as well as improved fill factor due to the well‐matched energy levels, the passivation of defects, and the complementary absorption spectra, suggesting a new route toward future high‐efficiency solar cells—incorporating organic non‐fullerene acceptors and halide perovskite materials into the same active layer.  相似文献   
999.
G Massad  H Zhao    H L Mobley 《Journal of bacteriology》1995,177(20):5878-5883
Proteus, Providencia, and Morganella species produce deaminases that generate alpha-keto acids from amino acids. The alpha-keto acid products are detected by the formation of colored iron complexes, raising the possibility that the enzyme functions to secure iron for these species, which do not produce traditional siderophores. A gene encoding an amino acid deaminase of uropathogenic Proteus mirabilis was identified by screening a genomic library hosted in Escherichia coli DH5 alpha for amino acid deaminase activity. The deaminase gene, localized on a cosmid clone by subcloning and Tn5::751 mutagenesis, was subjected to nucleotide sequencing. A single open reading frame, designated aad (amino acid deaminase), which appears to be both necessary and sufficient for deaminase activity, predicts a 473-amino-acid polypeptide (51,151 Da) encoded within an area mapped by transposon mutagenesis. The predicted amino acid sequence of Aad did not share significant amino acid sequence similarity with any other polypeptide in the PIR or SwissProt database. Amino acid deaminase activity in both P. mirabilis and E. coli transformed with aad-encoding plasmids was not affected by medium iron concentration or expression of genes in multicopy in fur, cya, or crp E. coli backgrounds. Enzyme expression was negatively affected by growth with glucose or glycerol as the sole carbon source but was not consistent with catabolite repression.  相似文献   
1000.
Abstract Adults of the psocid Liposcelis bostrychophila Badonnel were exposed to atmospheres containing 35% and 55% CO2 for 30 generations to select strains resistant to high CO2 content (HCC). Selection pressure was maintained at around 70% of mortality. At the 30th generation, comparison of sensitivities between the selected strains (HCC1 and HCC2) and the original susceptible strain (MA-S) revealed a resistance factor (RF) at the 50% mortality level (LT50) of 4. 6-and 5. 3-folds, respectively. Throughout the selection process, log-time against probit-mortality lines remained roughly parallel and the slopes remained lower than that of MA-S strain until the last generation. It is inplied that the genetic potential of L. bostrychophila to develop resistance to CO2 was not exhausted until the 30th generation. Removal of selection pressure for 5 generations from 2 sub-populations of two selected strains from the 25th generation caused significant reduction in resistance. In the absence of MAs exposure, the two selected strains (HCC1 and HCC2) possessed the fitness defect. HCC1 and HCC2 were calculated by R0 to have a fitness value of 0. 52 and 0. 45 relative to MA-S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号