Sorghum is largely grown for food, fodder and for biofuel production in semi-arid regions where the drought or high temperature or their combination co-occur. Plant microRNAs (miRNAs) are integral to the gene regulatory networks that control almost all biological processes including adaptation to stress conditions. Thus far, plant miRNA profiles under separate drought or heat stresses have been reported but not under combined drought and heat. In this study, we report miRNA profiles in leaves of sorghum exposed to individual drought or heat or their combination. Approximately 29 conserved miRNA families represented by 80 individual miRNAs, 26 families represented by 47 members of less conserved or sorghum-specific miRNA families as well as 8 novel miRNA families have been identified. Of these, 25 miRNAs were found to be differentially regulated in response to stress treatments. The comparative profiling revealed that the miRNA regulation was stronger under heat or combination of heat and drought compared to the drought alone. Furthermore, using degradome sequencing, 48 genes were confirmed as targets for the miRNAs in sorghum. Overall, this study provides a framework for understanding of the miRNA-guided gene regulations under combined stresses.
Numerous template-dependent DNA polymerases are capable of catalyzing template-independent nucleotide additions onto blunt-end DNA. Such non-canonical activity has been hypothesized to increase the genomic hypermutability of retroviruses including human immunodeficiency viruses. Here, we employed pre-steady state kinetics and X-ray crystallography to establish a mechanism for blunt-end additions catalyzed by Sulfolobus solfataricus Dpo4. Our kinetic studies indicated that the first blunt-end dATP incorporation was 80-fold more efficient than the second, and among natural deoxynucleotides, dATP was the preferred substrate due to its stronger intrahelical base-stacking ability. Such base-stacking contributions are supported by the 41-fold higher ground-state binding affinity of a nucleotide analog, pyrene nucleoside 5'-triphosphate, which lacks hydrogen bonding ability but possesses four conjugated aromatic rings. A 2.05 A resolution structure of Dpo4*(blunt-end DNA)*ddATP revealed that the base and sugar of the incoming ddATP, respectively, stack against the 5'-base of the opposite strand and the 3'-base of the elongating strand. This unprecedented base-stacking pattern can be applied to subsequent blunt-end additions only if all incorporated dAMPs are extrahelical, leading to predominantly single non-templated dATP incorporation. 相似文献
The WNK (With No Lysine K) serine-threonine kinases have been shown to be osmosensitive regulators and are critical for cell volume homeostasis in humans. We previously identified a soybean root-specific WNK homolog, GmWNK1, which is important for normal late root development by fine-tuning regulation of ABA levels. However, the functions of WNKs in plant osmotic stress response remains uncertain. In this study, we generated transgenic Arabidopsis plants with constitutive expression of GmWNK1. We found that these transgenic plants had increased endogenous ABA levels and altered expression of ABA-responsive genes, and exhibited a significantly enhanced tolerance to NaCl and osmotic stresses during seed germination and seedling development. These findings suggest that, in addition to regulating root development, GmWNK1 also regulates ABA-responsive gene expression and/or interacts with other stress related signals, thereby modulating osmotic stress responses. Thus, these results suggest that WNKs are members of an evolutionarily conserved kinase family that modulates cellular response to osmotic stresses in both animal and plants. 相似文献
To minimize the side effect of chemotherapy, a novel reduction/pH dual-sensitive drug nanocarrier, based on PEGylated dithiodipropionate dihydrazide (TPH)-modified hyaluronic acid (PEG-SS-HA copolymer), was developed for targeted delivery of doxorubicin (DOX) to hepatocellular carcinoma. The copolymer was synthesized by reductive amination via Schiff's base formation between TPH-modified HA and galactosamine-conjugated poly(ethylene glycol) aldehyde/methoxy poly(ethylene glycol) aldehyde. Conjugation of DOX to PEG-SS-HA copolymer was accomplished through the hydrazone linkage formed between DOX and PEG-SS-HA, and confirmed by FTIR and 1H NMR spectra. The polymer–DOX conjugate could self-assemble into spherical nanoparticles (∼150 nm), as indicated by TEM and DLS. In vitro release studies showed that the DOX-loaded nanoparticles could release DOX rapidly under the intracellular levels of pH and glutathiose. Cellular uptake experiments demonstrated that the nanoparticles could be efficiently internalized by HepG2 cells. These results indicate that the PEG-SS-HA copolymer holds great potential for targeted intracellular delivery of DOX. 相似文献
Live attenuated coccidiosis vaccines could be used as powerful carriers, expressing exogenous viral and bacterial antigens, to induce protective immunity against pathogenic organisms. We investigated the ability of Eimeria tenella to express an exogenous gene in vitro. Eimeria tenella sporozoites were transfected with the plasmid pH4-2EYFP-Actin3 containing the yellow fluorescent protein gene (yfp) and inoculated into primary chicken kidney cells (PCKCs), followed by incubation at 41 C in a 5% CO2 chamber. Fluorescent sporozoites were observed as early as 15-20 hr post-inoculation (PI). Fluorescence displayed by the expressed YFP protein was visible throughout the schizogony and gametogony stages of the tranfected E. tenella. Fluorescent oocysts were found between 200-327 hr PI. Higher fluorescence intensity was observed in the nucleus than in other compartments of the transfectants, while little or no fluorescence was seen in the refractile globule. The diversity of schizonts, particularly of the first generation, was presented by fluorescent nuclei arranged in different patterns. Our results demonstrated the ability of E. tenella to express an exogenous gene throughout the endogenous development in vitro. Completion of the endogenous development of transfected E. tenella in cell cultures will facilitate the study of foreign antigen expression in Eimeria spp., paving the way for the development of an Eimeria spp. vector vaccine that also carries and delivers other vaccines by oral administration. 相似文献