首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   5篇
  国内免费   9篇
  2022年   5篇
  2021年   3篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   9篇
  2011年   8篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1993年   1篇
排序方式: 共有117条查询结果,搜索用时 31 毫秒
61.
Bread wheat (Triticum aestivum L.) is a hexaploid species with a large and complex genome. A reference genetic marker map, namely the International Triticeae Mapping Initiative (ITMI) map, has been constructed with the recombinant inbred line population derived from a cross involving a synthetic line. But it is not sufficient for a full understanding of the wheat genome under artificial selection without comparing it with intervarietal maps. Using an intervarietal mapping population derived by crossing Nanda2419 and Wangshuibai, we constructed a high-density genetic map of wheat. The total map length was 4,223.1 cM, comprising 887 loci, 345 of which were detected by markers derived from expressed sequence tags (ESTs). Two-thirds of the high marker density blocks were present in interstitial and telomeric regions. The map covered, mostly with the EST-derived markers, approximately 158 cM of telomeric regions absent in the ITMI map. The regions of low marker density were largely conserved among cultivars and between homoeologous subgenomes. The loci showing skewed segregation displayed a clustered distribution along chromosomes and some of the segregation distortion regions (SDR) are conserved in different mapping populations. This map enriched with EST-derived markers is important for structure and function analysis of wheat genome as well as in wheat gene mapping, cloning, and breeding programs.  相似文献   
62.
Powdery mildew is a severe foliar disease for wheat and could cause great yield loss in epidemic years. To explore new powdery mildew resistance genes, two einkorn accessions including TA2033 and M80, both resistant to this disease, were studied for the inheritance of resistance. Each accession possessed a single but different dominant resistance gene that was designated as Mlm2033 and Mlm80, respectively. Marker mapping indicated that they are both linked to Xgwm344 on the long arm of chromosome 7A. To establish their genetic relationship with Pm1 on 7AL, five RFLP markers previously reported to co-segregate with Pm1a were converted to STS markers. Three of them detected polymorphism between the mapping parents and were mapped close to Mlm2033 or Mlm80 or both. Xmag2185, the locus determined by the STS marker derived from PSR680, one of the RFLP markers, was placed less than 2 cM away from them. The allelism test indicated that Mlm2033 and Mlm80 are likely allelic to each other. In addition, through comparative and EST mapping, more markers linked to these two genes were identified. The high density mapping of Mlm2033 and Mlm80 will contribute to map-based cloning of the Pm1 locus. The markers for both genes will also facilitate their transfer to wheat.  相似文献   
63.
64.
Mapping QTLs for tissue culture response of mature wheat embryos   总被引:4,自引:0,他引:4  
Jia H  Yi D  Yu J  Xue S  Xiang Y  Zhang C  Zhang Z  Zhang L  Ma Z 《Molecules and cells》2007,23(3):323-330
The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of "Wangshuibai" with "Nanda2419" which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.  相似文献   
65.

Background

N-acetyl-β-D-glucosamine (GlcNAc) is widely used as a valuable pharmacological agent and a functional food additive. The traditional chemical process for GlcNAc production has some problems such as high production cost, low yield, and acidic pollution. Hence, to identify a novel chitinase that is suitable for bioconversion of chitin to GlcNAc is of great value.

Results

A novel chitinase gene (PbChi74) from Paenibacillus barengoltzii was cloned and heterologously expressed in Escherichia coli as an intracellular soluble protein. The gene has an open reading frame (ORF) of 2,163 bp encoding 720 amino acids. The recombinant chitinase (PbChi74) was purified to apparent homogeneity with a purification fold of 2.2 and a recovery yield of 57.9%. The molecular mass of the purified enzyme was estimated to be 74.6 kDa and 74.3 kDa by SDS-PAGE and gel filtration, respectively. PbChi74 displayed an acidic pH optimum of 4.5 and a temperature optimum of 65°C. The enzyme showed high activity toward colloidal chitin, glycol chitin, N-acetyl chitooligosaccharides, and p-nitrophenyl N-acetyl β-glucosaminide. PbChi74 hydrolyzed colloidal chitin to yield N- acetyl chitobiose [(GlcNAc)2] at the initial stage, which was further converted to its monomer N-acetyl glucosamine (GlcNAc), suggesting that it is an exochitinase with β-N-acetylglucosaminidase activity. The purified PbChi74 coupled with RmNAG (β-N-acetylglucosaminidase from Rhizomucor miehei) was used to convert colloidal chitin to GlcNAc, and GlcNAc was the sole end product at a concentration of 27.8 mg mL-1 with a conversion yield of 92.6%. These results suggest that PbChi74 may have great potential in chitin conversion.

Conclusions

The excellent thermostability and hydrolytic properties may give the exochitinase great potential in GlcNAc production from chitin. This is the first report on an exochitinase with N-acetyl-β-D-glucosaminidase activity from Paenibacillus species.
  相似文献   
66.
【目的】椰子织蛾是近期入侵中国的棕榈植物重要害虫,研究其天敌寄生蜂,能为椰子织蛾的进一步防控提供科学依据。【方法】在海南岛收集鉴定了椰子织蛾天敌寄生蜂,观察记录寄生蜂发育历期、雌雄性比、成虫寿命等基础生物学特性。【结果】经形态及分子鉴定,收集到的椰子织蛾寄生蜂有幼虫期寄生蜂麦蛾柔茧蜂、蛹期寄生蜂金刚钻大腿小蜂和周氏啮小蜂。在温度(26±2)℃、湿度(75±10)%RH、以椰子织蛾为寄主条件下,麦蛾柔茧蜂、金刚钻大腿小蜂和周氏啮小蜂发育历期分别为11.8、19.6和20.6 d;每头寄主的出蜂量分别为10.1、1.0和81.5头;雌蜂占比分别为26.6%、40.6%和89.8%;每种寄生蜂雌蜂寿命均长于雄蜂。【结论】保护和利用椰子织蛾的3种本地寄生蜂,将有助于椰子织蛾的防控。  相似文献   
67.
目的基因全长cDNA合成及克隆技术进展   总被引:5,自引:0,他引:5  
在基因克隆、基因功能和表达调控研究中 ,获得目的基因尤其是表达丰度低的基因全长cDNA仍然是一个技术难题。本文对近年来有关反转录过程中影响全长cDNA合成的因素与对策的研究进行了总结 ,特别对消除mRNA二级结构阻碍的方法及其效果、较高反应温度和金属离子对模板mRNA完整性的影响、RNA分子伴侣在反应温度不变的情况下改善cDNA第一链质量的效果等作了较为详细的介绍。此外 ,还介绍了确保具有完整5′端的cDNA进入后续研究的几种新方法。  相似文献   
68.
69.
70.
The Nostoc sp (Ns) H‐NOX (heme‐nitric oxide or OXygen‐binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y‐shaped tunnel system hosted in the Ns H‐NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881–889] recently using x‐ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H‐NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H‐NOX was identified. On the contrary, CO and O2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H‐NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group. Proteins 2013; 81:1363–1376. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号