首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19383篇
  免费   1489篇
  国内免费   1096篇
  21968篇
  2024年   53篇
  2023年   227篇
  2022年   579篇
  2021年   906篇
  2020年   601篇
  2019年   738篇
  2018年   827篇
  2017年   549篇
  2016年   845篇
  2015年   1153篇
  2014年   1310篇
  2013年   1465篇
  2012年   1767篇
  2011年   1555篇
  2010年   964篇
  2009年   847篇
  2008年   1067篇
  2007年   936篇
  2006年   821篇
  2005年   731篇
  2004年   585篇
  2003年   548篇
  2002年   473篇
  2001年   357篇
  2000年   295篇
  1999年   288篇
  1998年   180篇
  1997年   140篇
  1996年   105篇
  1995年   111篇
  1994年   79篇
  1993年   70篇
  1992年   96篇
  1991年   97篇
  1990年   87篇
  1989年   69篇
  1988年   56篇
  1987年   53篇
  1986年   39篇
  1985年   44篇
  1984年   23篇
  1983年   23篇
  1982年   21篇
  1981年   13篇
  1979年   20篇
  1978年   16篇
  1977年   19篇
  1976年   15篇
  1975年   14篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Chen X  Huang J  Li J  Han Y  Wu K  Xu P 《Cell biology international》2004,28(11):791-799
The present study demonstrates that the expression of Tra2beta1 (Transformer 2-beta1) proteins, an SR (serine/arginine rich) protein, is developmentally up-regulated in a neural-specific pattern. The up-regulation is also observed in RA (retinoic acid) induced neural differentiation of P19 cells. Tra2betal proteins are located in the nuclei of P19 cells, which are consistent with its functional site as an SR protein. The over-expression of Tra2betal proteins promotes RA induced neuronal differentiation of P19 cells. In P19 cells, the splicing of FGF-2R (fibroblast growth factor receptor 2) minigene produces the BEK form, while the alternative splicing of GluR-B (glutamate receptor subunit B) minigene generates two products, the Flop and the Truncated isoforms. Tra2betal inhibits the BEK splicing, but it promotes the Flop splicing. The results therefore suggest that Tra2betal is involved in the regulation of alternative splicing processes during neural development, peculiarly the splicing of FGF-2R and GluR-B genes. Both FGF-2R and GluR-B genes are known to play important roles in neural differentiation.  相似文献   
992.
Many peninsulas in the temperate zone played an important role as refugia of various flora and fauna, and the southern Korean Peninsula also served as a refugium for many small mammals in East Asia during the Pleistocene. The Asian lesser white-toothed shrew, Crocidura shantungensis, is a widely distributed species in East Asia, and is an appropriate model organism for exploring the role of the Korean Peninsula as a refugium of small mammals. Here, we investigated phylogenetic relationships and genetic diversity based on the entire sequence of the mitochondrial cytochrome b gene (1140 bp). A Bayesian tree for 98 haplotypes detected in 228 C. shantungensis specimens from East Asia revealed the presence of three major groups with at least 5 subgroups. Most haplotypes were distributed according to their geographic proximity. Pairwise FST’s and analysis of molecular variance (AMOVA) revealed a high degree of genetic differentiation and variance among regions as well as among populations within region, implying little gene flow among local populations. Genetic evidence from South Korean islands, Jeju-do Island of South Korea, and Taiwan leads us to reject the hypothesis of recent population expansion. We observed unique island-type genetic characteristics consistent with geographic isolation and resultant genetic drift. Phylogeographic inference, together with estimates of genetic differentiation and diversity, suggest that the southern most part the Korean Peninsula, including offshore islands, played an important role as a refugium for C. shantungensis during the Pleistocene. However, the presence of several refugia on the mainland of northeast Asia is also proposed.  相似文献   
993.
We identified four breast cancer cell lines and one stomach cancer cell line resistant to the cytotoxic effects of doxorubicin (DOX) and examined their sensitivity to other chemotherapeutic agents. SP600125, an inhibitor of the Jnk pathway, reduced the cellular viability of all five DOX-resistant cancer cell lines. Jnk1 siRNA also reduced the viability of the one DOX-resistant cell line in which it was tested. Similar results were produced in an in vivo mouse model, in which the volume of tumors derived from the DOX-resistant cell line was reduced more effectively by treatment with SP600125 than by treatment with DOX, whereas those from a DOX-sensitive cell line were reduced only by DOX treatment. Overall, these results may contribute to the development of chemotherapeutic treatments for patients with DOX-resistant tumors.  相似文献   
994.
995.
Callose or beta-1,3-glucan performs multiple functions during male and female gametophyte development. Callose is synthesized by 12 members of the glucan synthase-like (GSL) gene family in Arabidopsis thaliana. To elucidate the biological roles of Arabidopsis GSL family members during sexual development, we initiated a reverse genetic approach with T-DNA insertional mutagenesis lines. We screened T-DNA insertion lines for all members of the GSL gene family and detected homozygous mutant seedlings for all members except GSL10. Three independent alleles in GSL10, gsl10-1, gsl10-3 and gsl10-4 showed distorted segregation (1:1:0) of T-DNA inserts rather than Mendelian segregation (1:2:1). By genetic analysis through reciprocal cross, we determined that gsl10 pollen could not be transmitted to descendent. The mutant pollen of GSL10/gsl10 plants at tetrad and microspore stages were not different from that of wild type, suggesting that GSL10 is not essential for normal microspore growth. Analysis of GSL10/gsl10 hemizygous pollen during development revealed abnormal function in asymmetric microspore division. gsl10 mutant microspores failed to enter into mitosis. Unlike the previously described functions of GSL1, GSL2 and GSL5, GSL10 involves an independent process of pollen development at the mitotic division stage.  相似文献   
996.
The ability to generate neural lineages from human embryonic stem cells (hESCs) in a controlled manner would further investigation of human neurogenesis and development of potential cell therapeutic applications to treat neurological diseases; however, generating such neural stem cells (NSCs) remains a challenge. In an attempt to characterize the cellular mechanisms involved in hESC differentiation into neuroprogenitor cells, we performed 2‐DE using protein extracts from hESC‐derived embryoid bodies (EBs) and neuroectodermal spheres (NESs) bearing neuroprogenitors. Of 47 differentially expressed protein spots, 28 nonredundant spots were shown to be upregulated in the NESs; these protein spots included neurogenesis‐related proteins (TAF1, SEPT2, NPH3, and CRABP), as expected. Interestingly, 6 of these 28 protein spots were cytoskeleton‐associated proteins (CSAP) such as Fascin‐1, Cofilin‐1, and Stathmin‐1. Western‐blot analyses confirmed the increased levels of these proteins in the NESs. Furthermore, immunostaining analysis showed that both Fascin‐1 and Stathmin‐1 were preferentially expressed in the inner rims of neural rosettes, which are characteristic features of neuroprogenitors in culture. We also confirmed prominent expression of Fascin‐1 in (sub‐)ventricular zone in E15.5 mouse fetal brain. Our results suggest that, in addition to the induction of those genes involved in neural development, hESC differentiation into the NES is associated with a marked reorganization of the cellular cytoskeleton.  相似文献   
997.
胃癌是全球第四大最常见的癌症,也是全球癌症中引起死亡的第二大原因。为了降低胃癌的死亡率,目前亟需解决的问题是发现新的早期胃癌特异性的标志物,提高早期胃癌的检出率,从而从根本上解决胃癌死亡率高的问题。实验室前期研究发现过氧化物酶4 (Peroxiredoxin 4,PRDX4)具有早期胃癌标志物的潜能,文中通过建立恶性转化模型及转化细胞过表达等方法,研究PRDX4在转化细胞中的作用。结果显示PRDX4通过减少转化细胞中活性氧(Reactive oxygen species,ROS)含量,使细胞处在利于生长增殖的微环境中,从而促进细胞发生恶性转化,即PRDX4通过清除ROS促进胃癌的发生发展。  相似文献   
998.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   
999.
The balance between bone formation and bone resorption is closely related to bone homeostasis. Osteoclasts, originating from the monocyte/macrophage lineage, are the only cell type possessing bone resorption ability. Osteoclast overactivity is thought to be the major reason underlying osteoclast‐related osteolytic problems, such as Paget's disease, aseptic loosening of prostheses and inflammatory osteolysis; therefore, disruption of osteoclastogenesis is considered a crucial treatment option for these issues. WKYMVm, a synthetic peptide, which is a potent FPR2 agonist, exerts an immunoregulatory effect. This peptide inhibits the production of inflammatory cytokines, such as (IL)‐1β and TNF‐α, thus regulating inflammation. However, there are only few reports on the role of WKYMVm and FPR2 in osteoclast cytology. In the current study, we found that WKYMVm negatively regulates RANKL‐ and lipopolysaccharide (LPS)‐induced osteoclast differentiation and maturation in vitro and alleviates LPS‐induced osteolysis in animal models. WKYMVm down‐regulated the expression of osteoclast marker genes and resorption activity. Furthermore, WKYMVm inhibited osteoclastogenesis directly through reducing the phosphorylation of STAT3 and NF‐kB and indirectly through the CD9/gp130/STAT3 pathway. In conclusion, our findings demonstrated the potential medicinal value of WKYMVm for the treatment of inflammatory osteolysis.  相似文献   
1000.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号