首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18178篇
  免费   1427篇
  国内免费   1639篇
  21244篇
  2024年   43篇
  2023年   228篇
  2022年   622篇
  2021年   1016篇
  2020年   663篇
  2019年   809篇
  2018年   772篇
  2017年   529篇
  2016年   760篇
  2015年   1135篇
  2014年   1357篇
  2013年   1415篇
  2012年   1704篇
  2011年   1513篇
  2010年   913篇
  2009年   829篇
  2008年   920篇
  2007年   811篇
  2006年   738篇
  2005年   686篇
  2004年   528篇
  2003年   481篇
  2002年   377篇
  2001年   301篇
  2000年   281篇
  1999年   276篇
  1998年   173篇
  1997年   165篇
  1996年   181篇
  1995年   136篇
  1994年   155篇
  1993年   100篇
  1992年   115篇
  1991年   112篇
  1990年   79篇
  1989年   72篇
  1988年   48篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   37篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Liu S  Yang F  Gong Z  Meng F  Chen H  Xue Y  Furukawa K 《Bioresource technology》2008,99(15):6817-6825
The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.  相似文献   
993.
A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to quantify colistin in human plasma and urine, and perfusate and urine from the isolated perfused rat kidney (IPK). Solid phase extraction (SPE) preceded chromatography on a Synergi Fusion-RP column with a mobile phase of acetonitrile, water and acetic acid (80/19/1) at 0.2mL/min. Ions were generated using electrospray ionization and detected in the positive-ion mode. Multiple reaction monitoring was performed using precursor-product ion combinations. Calibration curves were linear from 0.028microg/mL (human plasma, IPK perfusate and urine)/0.056microg/mL (human urine) to 1.78microg/mL (all four media) for colistin A sulfate; corresponding values for colistin B sulfate were 0.016/0.032 to 1.01microg/mL. Accuracy and precision were within 10%. The LLOQ for colistin A sulfate was 0.028microg/mL in human plasma, IPK perfusate and urine and 0.056microg/mL in human urine; corresponding values for colistin B sulfate were 0.016 and 0.032microg/mL. The low sample volume, short analysis time and low LLOQ are ideal for pre-clinical and human pharmacokinetic studies of colistin.  相似文献   
994.
As a hepatitis B virus (HBV) envelope domain, preS plays significant roles in receptor recognition and viral infection. However, the regions critical for maintaining a stable and functional conformation of preS are still unclear and require further investigation. In order to unravel these regions, serially truncated fragments of preS were constructed and expressed in Escherichia coli. Their solubility, stability, secondary structure, and affinity to polyclonal antibodies and hepatocytes were examined. The results showed that amino acids 31-36 were vital for its stable conformation, and the absence of 10-36 amino acids significantly reduced its binding to polyclonal antibodies as well as hepatocytes. The most stable fragment 1-120 (preS1 + N-terminal 12 amino acids of preS2), perhaps the core of preS, was discovered, which bound to HepG2 cells most tightly. Moreover, the availability of large amounts of well-folded and stable preS1-120 enables us to carry out further structural determination and mechanistic study on HBV infection.  相似文献   
995.
996.
In this study, the feasibility of biological urea nitrogen removal in anaerobic Anammox co-culture was investigated. After 100 days of operation, complete urea nitrogen removal of 0.35 g (NH(2))(2)CO-N L(-1) d(-1) was achieved. The pure Anammox bacteria were obtained by percoll density-gradient centrifugation and found to be of incapable to hydrolyze urea. The ureolytic bacteria were isolated from the Anammox co-culture by the spread plate and streak. Comparative analysis of partial 16S rDNA sequence presented it belongs to Bacillus sp., and so named as Bacillus sp. LST-1. Fluorescence in situ hybridization was applied to identify the ratio of Bacillus sp. and Anammox in the reactor and the value was approximately 1:4. Urea nitrogen removal was realized in this autotrophic, anoxic reactor via the combined process of urea hydrolysis by Bacillus sp. LST-1 and ammonium oxidizing by Anammox. The investigation of this combined process might have an actual significance in engineering application for its low operational cost.  相似文献   
997.
Leukotriene (LT)A4 and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA4 is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A4. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA4 and converts 5R-HPETE to the cis epoxide 5-epi-LTA4, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations.  相似文献   
998.
Metastasis remains to be one of the most prevalent causes leading to poor long-term survival of colorectal cancer (CRC) patients. The clinical significances of tumor metastatic suppressor, N-myc downregulated gene 1 (NDRG1), have been inconsistently reported in a variety of cancerous diseases. In this study with 240 CRC clinical specimens, we showed that NDRG1 expression was significantly decreased in most of CRC tissues compared to the paired non-tumor counterparts. Statistical analysis revealed a significant inverse correlation of NDRG1 expression with tumor stage, differentiation status and metastasis. Compared with NDRG1-negative group, NDRG1-positve group had better disease-free/overall survival (p = 0.000) over 5 years’ follow-up. Furthermore, NDRG1 was considered to be an independent prognostic factor for overall survival (p = 0.001) and recurrence (p = 0.003). Our study concludes that NDRG1 is a novel favorable predictor for the prognosis in CRC patients.  相似文献   
999.
Biliary atresia (BA) is a devastating cholestatic liver disease targeting infants. Current diagnosis depends on surgical exploration of the biliary tree. The aim of the present study was to identify potential biomarkers for the diagnosis of biliary atresia (BA). Two-dimensional electrophoresis was utilized for the identification of proteins that were differentially expressed in liver biopsies of 20 BA patients and 12 infants with non-BA neonatal cholestasis (NC) as controls. Using mass spectrometry, we identified 15 proteins with expressions significantly altered. Out of the 15 proteins identified, heat shock protein (HSP) 90 was the most significantly altered and was down-regulated in BA samples compared to NC samples using immunoblotting analysis. Our findings suggest that HSP90 might be a potential biomarker for the diagnosis of BA and may be used for monitoring further development and therapy for BA. This study demonstrated that a comprehensive strategy of proteomic identification combined with further validation should be adopted in biomarker discovery.  相似文献   
1000.
Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号