首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17709篇
  免费   1413篇
  国内免费   1567篇
  2024年   28篇
  2023年   193篇
  2022年   484篇
  2021年   989篇
  2020年   655篇
  2019年   793篇
  2018年   758篇
  2017年   522篇
  2016年   745篇
  2015年   1114篇
  2014年   1332篇
  2013年   1387篇
  2012年   1662篇
  2011年   1479篇
  2010年   901篇
  2009年   819篇
  2008年   903篇
  2007年   799篇
  2006年   722篇
  2005年   672篇
  2004年   518篇
  2003年   473篇
  2002年   369篇
  2001年   297篇
  2000年   279篇
  1999年   271篇
  1998年   173篇
  1997年   159篇
  1996年   181篇
  1995年   136篇
  1994年   154篇
  1993年   98篇
  1992年   113篇
  1991年   108篇
  1990年   79篇
  1989年   72篇
  1988年   48篇
  1987年   55篇
  1986年   38篇
  1985年   28篇
  1984年   37篇
  1983年   18篇
  1982年   14篇
  1981年   9篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
241.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   
242.
243.
Numerous studies have demonstrated that thioredoxin-interacting protein (TXNIP) expression of peripheral blood leucocytes is increased in coronary artery disease (CAD). However, the molecular mechanism of this phenomenon remained unclear. DNA methylation plays important roles in the regulation of gene expression. Therefore, we speculated there might be a close association between the expression of TXNIP and methylation. In this study, we found that compared with controls, DNA methylation at cg19693031 was decreased in CAD, while mRNA expressions of TXNIP and inflammatory factors, NLRP3, IL-1β, IL-18, were increased. Methylation at cg19693031 was negatively associated with TXNIP expression in the cohort, THP-1 and macrophages/foam cells. Furthermore, Transwell assay and co-cultured adhesion assay were performed to investigate functions of TXNIP on the migration of THP-1 or the adhesion of THP-1 on the surface of endothelial cells, respectively. Notably, overexpressed TXNIP promoted the migration and adhesion of THP-1 cells and expressions of NLRP3, IL-18 and IL-1β. Oppositely, knock-down TXNIP inhibited the migration and adhesion of THP-1 and expressions of NLRP3, IL-18. In conclusion, increased TXNIP expression, related to cg19693031 demethylation orientates monocytes towards an inflammatory status through the NLRP3 inflammasome pathway involved in the development of CAD.  相似文献   
244.
245.
246.
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.  相似文献   
247.
248.
The current study was designed to explore the role and underlying mechanism of lncRNA taurine up-regulated gene 1 (TUG1) in cardiac hypertrophy. Mice were treated by transverse aortic constriction (TAC) surgery to induce cardiac hypertrophy, and cardiomyocytes were treated by phenylephrine (PE) to induce hypertrophic phenotype. Haematoxylin-eosin (HE), wheat germ agglutinin (WGA) and immunofluorescence (IF) were used to examine morphological alterations. Real-time PCR, Western blots and IF staining were used to detect the expression of RNAs and proteins. Luciferase assay and RNA pull-down assay were used to verify the interaction. It is revealed that TUG1 was up-regulated in the hearts of mice treated by TAC surgery and in PE-induced cardiomyocytes. Functionally, overexpression of TUG1 alleviated cardiac hypertrophy both in vivo and in vitro. Mechanically, TUG1 sponged and sequestered miR-34a to increase the Dickkopf 1 (DKK1) level, which eventually inhibited the activation of Wnt/β-catenin signalling. In conclusion, the current study reported the protective role and regulatory mechanism of TUG1 in cardiac hypertrophy and suggested that TUG1 may serve as a novel molecular target for treating cardiac hypertrophy.  相似文献   
249.
Under the microenvironment, tumour progression is substantially affected by cell‐cell communication. In spite of the mediating effect of extracellular nanovesicles (EVs) on cell‐cell communication by packaging into circRNAs, the effect of EVs circRNA hsa_circ_0000190 (circ‐0000190) in osteosarcoma is still not clear. Circ‐0000190 expressions in tissues and EVs from plasma were compared between osteosarcoma patients and controls. Thereafter, receiver operating characteristic (ROC) curve was drawn and area under the curve was calculated to examine whether the diagnostic results were accurate, and the effect of EVs circ‐0000190 was dug out via the determination of cell phenotypes and animal assays. Results showed circ‐0000190 exhibited an obvious reduction in EVs and tissues of osteosarcoma patients (P < .05). It was also discovered that EVs encapsulated the majority of circ‐0000190, and EVs‐encapsulated circ‐0000190 could be applied to make a distinction between osteosarcoma patients and controls. Besides, EVs circ‐0000190 in osteosarcoma cells transported from normal cells weakened the capacities of osteosarcoma cells to migrate, proliferate and invade, so as to block their biological malignant behaviours (P < .05). In addition, under the action of EVs circ‐0000190, tumour growth was impeded and the expression of TET1 was inhibited via the competitive binding to miR‐767‐5p. In all, EVs circ‐0000190 has a good prospect as it can be regarded as a new biomarker for detecting osteosarcoma. EVs circ‐0000190 transported from normal cells to osteosarcoma cells impeded the in vitro and in vivo development of osteosarcoma, implying that EVs circ‐0000190 exerts an effect on communication between normal cells and osteosarcoma cells in the carcinogenesis process of osteosarcoma.  相似文献   
250.
Conditionally replicative adenoviruses (CRAds) were promising approach for solid tumour treatment, but its oncolytic efficiency and toxicity are still not satisfactory for further clinical application. Here, we developed the CAIX promotor (CAIXpromotor)‐controlled CRAd armed with a tumour suppressor absent in melanoma 2 (AIM2) to enhance its oncolytic potency. The CAIXpromotor‐AIM2 adenoviruses (Ad‐CAIXpromotor‐AIM2) could efficiently express E1A and AIM2 in renal cancer cells. Compared with Ad‐CAIXpromotor, Ad‐CAIXpromotor‐AIM2 significantly inhibited cell proliferation and enhanced cell apoptosis and cell killing, thus resulting in the oncolytic efficiency in 786‐O cells or OSRC‐2 cells. To explore the therapeutic effect, various Ads were intratumourally injected into OSRC‐2‐xenograft mice. The tumour growth was remarkably inhibited in Ad‐CAIXpromotor‐AIM2‐treated group as demonstrated by reduced tumour volume and weight with a low toxicity. The inflammasome inhibitor YVAD‐CMK resulted in the reduction of anti‐tumour activity by Ad‐CAIXpromotor‐AIM2 in vitro or in vivo, suggesting that inflammasome activation response was required for the enhanced therapeutic efficiency. Furthermore, lung metastasis of renal cancer mice was also suppressed by Ad‐CAIXpromotor‐AIM2 treatment accompanied by the decreased tumour fossil in lung tissues. These results indicated that the tumour‐specific Ad‐CAIXpromotor‐AIM2 could be applied for human renal cancer therapy. The therapeutic strategy of AIM2‐based CRAds could be a potential and promising approach for the therapy of primary solid or metastasis tumours.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号