全文获取类型
收费全文 | 25753篇 |
免费 | 2197篇 |
国内免费 | 2444篇 |
专业分类
30394篇 |
出版年
2024年 | 76篇 |
2023年 | 401篇 |
2022年 | 901篇 |
2021年 | 1441篇 |
2020年 | 990篇 |
2019年 | 1252篇 |
2018年 | 1127篇 |
2017年 | 803篇 |
2016年 | 1128篇 |
2015年 | 1651篇 |
2014年 | 1908篇 |
2013年 | 1970篇 |
2012年 | 2396篇 |
2011年 | 2141篇 |
2010年 | 1269篇 |
2009年 | 1139篇 |
2008年 | 1353篇 |
2007年 | 1096篇 |
2006年 | 1021篇 |
2005年 | 812篇 |
2004年 | 641篇 |
2003年 | 589篇 |
2002年 | 543篇 |
2001年 | 418篇 |
2000年 | 414篇 |
1999年 | 393篇 |
1998年 | 269篇 |
1997年 | 273篇 |
1996年 | 230篇 |
1995年 | 216篇 |
1994年 | 186篇 |
1993年 | 144篇 |
1992年 | 192篇 |
1991年 | 158篇 |
1990年 | 152篇 |
1989年 | 110篇 |
1988年 | 93篇 |
1987年 | 90篇 |
1986年 | 75篇 |
1985年 | 69篇 |
1984年 | 44篇 |
1983年 | 48篇 |
1982年 | 21篇 |
1981年 | 18篇 |
1980年 | 14篇 |
1979年 | 12篇 |
1978年 | 10篇 |
1969年 | 9篇 |
1968年 | 8篇 |
1965年 | 16篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Scott L. Nyberg Russell A. Shatford William D. Payne Wei-Shou Hu Frank B. Cerra 《Biotechnic & histochemistry》1993,68(1):56-63
To establish the importance of fluorescein diacetate (FDA) as a viability stain for cultured hepatocytes. we hypothesized that FDA staining would correlate positively with hepatocyte viability and function. Mixtures of live and dead cells were stained with FDA and scanned by flow cytometry. A close correlation was observed between the live cell fraction and percent viability as determined by FDA staining (R2 = 0.962). Hepatocytes were also sorted into low fluorescence and high fluorescence groups. Both albumin production and lidocaine metabolism (P-450 activity) were significantly increased in the high fluorescence group compared to the low fluorescence group. An automated, fluorescence-activated assay was useful for rapid assessment of hepatocyte viability. In addition. the intensity of green fluorescence following staining with FDA correlated well with two specific measures of hepatocyte function. 相似文献
102.
Qing Li Zhong Tang Yibing Hu Ling Yu Zhaopu Liu Guohua Xu 《Molecular biology reports》2014,41(8):5097-5108
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na+/H+ antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4 % identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na+ and accumulate more K+. Expression of HtSOS1 decreased Na+ content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte. 相似文献
103.
In this study, Dendrobium officinale polysaccharide (named DOPS-1) was isolated from the stems of Dendrobium officinale by hot-water extraction and purified by using Sephadex G-150 column chromatography. The structural characterization, antioxidant and cytotoxic activity were carried out. Based on the results of HPLC, GC, Congo red experiment, together with periodate oxidation, Smith degradation, SEM, FT-IR, and NMR spectral analysis, it expressed that DOPS-1 was largely composed of mannose, glucose and galacturonic acid in a molar ratio of 3.2 : 1.3 : 1. The molecular weight of DOPS-1 was 1530 kDa and the main chain was composed of (1→4)-β-D-Glcp, (1→4)-β-D-Manp and 2-O-acetyl-(1→4)-β-D-Manp. The measurement results of antioxidant activity showed that DOPS-1 had the strong scavenging activities on hydroxyl radicals, DPPH radicals and superoxide radicals and the high reducing ability in vitro. Moreover, DOPS-1 was cytotoxic to all three human cancer cells of MDA-MB-231, A549 and HepG2. 相似文献
104.
105.
106.
107.
Ling-Yan Jiang Yuan-Yuan Zhang Zhen Li Jian-Zhong Liu 《Journal of industrial microbiology & biotechnology》2013,40(10):1143-1151
The experiments presented here were based on the conclusions of our previous proteomic analysis. Increasing the availability of glutamate by overexpression of the genes encoding enzymes in the l-ornithine biosynthesis pathway upstream of glutamate and disruption of speE, which encodes spermidine synthase, improved l-ornithine production by Corynebacterium glutamicum. Production of l-ornithine requires 2 moles of NADPH per mole of l-ornithine. Thus, the effect of NADPH availability on l-ornithine production was also investigated. Expression of Clostridium acetobutylicum gapC, which encodes NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, and Bacillus subtilis rocG, which encodes NAD-dependent glutamate dehydrogenase, led to an increase of l-ornithine concentration caused by greater availability of NADPH. Quantitative real-time PCR analysis demonstrates that the increased levels of NADPH resulted from the expression of the gapC or rocG gene rather than that of genes (gnd, icd, and ppnK) involved in NADPH biosynthesis. The resulting strain, C. glutamicum ΔAPRE::rocG, produced 14.84 g l?1 of l-ornithine. This strategy of overexpression of gapC and rocG will be useful for improving production of target compounds using NADPH as reducing equivalent within their synthetic pathways. 相似文献
108.
Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression 下载免费PDF全文
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor. 相似文献
109.
Yu Sun Hongxia Zhang Ruimin Hu Jianyong Sun Xing Mao Zhonghua Zhao Qi Chen Zhigang Zhang 《PloS one》2014,9(4)
Growing evidence suggests that there are many common cell biological features shared by neurons and podocytes; however, the mechanism of podocyte foot process formation remains unclear. Comparing the mechanisms of process formation between two cell types should provide useful guidance from the progress of neuron research. Studies have shown that some mature proteins of podocytes, such as podocin, nephrin, and synaptopodin, were also expressed in neurons. In this study, using cell biological experiments and immunohistochemical techniques, we showed that some neuronal iconic molecules, such as Neuron-specific enolase, nestin and Neuron-specific nuclear protein, were also expressed in podocytes. We further inhibited the expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 by Small interfering RNA in cultured mouse podocytes and observed the significant morphological changes in treated podocytes. When podocytes were treated with Adriamycin, the protein expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 decreased over time. Meanwhile, the morphological changes in the podocytes were consistent with results of the Small interfering RNA treatment of these proteins. The data demonstrated that neuronal iconic proteins play important roles in maintaining and regulating the formation and function of podocyte processes. 相似文献
110.
多囊卵巢综合征模型鼠颗粒细胞凋亡及TRAIL蛋白的表达 总被引:2,自引:0,他引:2
目的通过观察卵巢颗粒细胞凋亡及TRAIL(肿瘤坏死因子相关凋亡诱导配体)蛋白的表达情况,探讨颗粒细胞凋亡与PCOS发病的相关性及凋亡调控蛋白TRAIL在PCOS颗粒细胞凋亡中的作用。方法采用硫酸普拉睾酮钠诱导大鼠PCOS模型,3’-末端原位标记法(TUNEL)检测大鼠卵巢颗粒细胞凋亡情况,免疫组化染色及RT-PCR分析检测TRAIL蛋白及TRAIL mRNA在颗粒细胞的表达。结果PCOS组大鼠卵巢窦状卵泡颗粒细胞凋亡发生率及TRAIL蛋白的表达较对照组明显增强(P<0.01,P<0.05),窦前卵泡颗粒细胞凋亡发生率及TRAIL蛋白的表达两组无显著性差异(P>0.05),两组卵巢始基卵泡颗粒细胞未发现凋亡征象及TRAIL蛋白表达。PCOS组大鼠卵巢颗粒细胞TRAIL mRNA的表达较对照组明显增强(P<0.01)。结论PCOS大鼠卵巢窦状卵泡颗粒细胞凋亡明显增强,TRAIL在PCOS大鼠卵巢颗粒细胞凋亡调控中发挥了作用。 相似文献