首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5091篇
  免费   551篇
  国内免费   749篇
  2024年   21篇
  2023年   95篇
  2022年   205篇
  2021年   323篇
  2020年   244篇
  2019年   308篇
  2018年   238篇
  2017年   201篇
  2016年   234篇
  2015年   340篇
  2014年   414篇
  2013年   419篇
  2012年   499篇
  2011年   477篇
  2010年   291篇
  2009年   234篇
  2008年   279篇
  2007年   201篇
  2006年   200篇
  2005年   172篇
  2004年   138篇
  2003年   147篇
  2002年   178篇
  2001年   98篇
  2000年   94篇
  1999年   69篇
  1998年   63篇
  1997年   31篇
  1996年   39篇
  1995年   27篇
  1994年   25篇
  1993年   15篇
  1992年   12篇
  1991年   15篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   3篇
  1986年   12篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
排序方式: 共有6391条查询结果,搜索用时 15 毫秒
991.
Hydrogen sulphide (H2S) serves as a vital gastric mucosal defence under acid condition. Non‐steroidal anti‐inflammatory drugs (NSAIDs) are among widely prescribed medications with effects of antipyresis, analgesia and anti‐inflammation. However, their inappropriate use causes gastric lesions and endogenous H2S deficiency. In this work, we reported the roles of a novel pH‐controlled H2S donor (JK‐1) in NSAID‐related gastric lesions. We found that JK‐1 could release H2S under mild acidic pH and increase solution pH value. Intragastrical administration of aspirin (ASP), one of NSAIDs, to mice elicited significant gastric lesions, evidenced by mucosal festering and bleeding. It also led to infiltration of inflammatory cells and resultant releases of IL‐6 and TNF‐α, as well as oxidative injury including myeloperoxidase (MPO) induction and GSH depletion. In addition, the ASP administration statistically inhibited H2S generation in gastric mucosa, while up‐regulated cyclooxygenase (COX)‐2 and cystathionine gamma lyase (CSE) expression. Importantly, these adverse effects of ASP were prevented by the intragastrical pre‐administration of JK‐1. However, JK‐1 alone did not markedly alter the property of mouse stomachs. Furthermore, in vitro cellular experiments showed the exposure of gastric mucosal epithelial (GES‐1) cells to HClO, imitating MPO‐driven oxidative injury, decreased cell viability, increased apoptotic rate and damaged mitochondrial membrane potential, which were reversed by pre‐treatment with JK‐1. In conclusion, JK‐1 was proved to be an acid‐sensitive H2S donor and could attenuate ASP‐related gastric lesions through reconstruction of endogenous gastric defence. This work indicates the possible treatment of adverse effects of NSAIDs with pH‐controlled H2S donors in the future.  相似文献   
992.
993.
To research and estimate the effects of molar ratios on structures, stabilities, mechanical properties, and detonation properties of CL-20/HMX cocrystal explosive, the CL-20/HMX cocrystal explosive models with different molar ratios were established in Materials Studio (MS). The crystal parameters, structures, stabilities, mechanical properties, and some detonation parameters of different cocrystal explosives were obtained and compared. The molecular dynamics (MD) simulation results illustrate that the molar ratios of CL-20/HMX have a direct influence on the comprehensive performance of cocrystal explosive. The hardness and rigidity of the 1:1 cocrystal explosive was the poorest, while the plastic property and ductibility were the best, thus implying that the explosive has the best mechanical properties. Besides, it has the highest binding energy, so the stability and compatibility is the best. The cocrystal explosive has better detonation performance than HMX. In a word, the 1:1 cocrystal explosive is worth more attention and further research. This paper could offer some theoretical instructions and technological support, which could help in the design of the CL-20 cocrystal explosive.  相似文献   
994.
The ultrahigh thermoelectric performance of SnSe‐based single crystals has attracted considerable interest in their polycrystalline counterparts. However, the temperature‐dependent structural transition in SnSe‐based thermoelectric materials and its relationship with their thermoelectric performance are not fully investigated and understood. In this work, nanolaminar SnSe polycrystals are prepared and characterized in situ using neutron and synchrotron powder diffraction measurements at various temperatures. Rietveld refinement results indicate that there is a complete inter‐orthorhombic evolution from Pnma to Cmcm by a series of layer slips and stretches along the a‐ and b‐axes over a 200 K temperature range. This phase transition leads to drastic enhancement of the carrier concentration and phonon scattering above 600 K. Moreover, the unique nanolaminar structure effectively enhances the carrier mobility of SnSe. Their grain and layer boundaries further improve the phonon scattering. These favorable factors result in a high ZT of 1.0 at 773 K for pristine SnSe polycrystals. The thermoelectric performances of polycrystalline SnSe are further improved by p‐type and n‐type dopants (i.e., doped with Ag and SnCl2, respectively), and new records of ZT are achieved in Ag0.015Sn0.985Se (ZT of 1.3 at 773 K) and SnSe0.985Cl0.015 (ZT of 1.1 at 773 K) polycrystals.  相似文献   
995.
996.
Selenium–sulfur solid solutions are a class of potential cathode materials for high energy batteries, since they have higher theoretical capacities than selenium and improved conductivity over sulfur. Here, a high‐performance cathode material by confining 70 wt% of SeS2 in a highly ordered mesoporous carbon (CMK‐3) framework with a polydopamine (PDA) protection sheath for novel Li–Se/S batteries is reported. With a relatively high SeS2 mass loading of 2.6–3 mg cm?2, the CMK‐3/SeS2@PDA cathode exhibits a high capacity of >1200 mA h g?1 at 0.2 A g?1, excellent C‐rate capability of 535 mA h g?1 at 5 A g?1, and prolonged life over 500 cycles. Benefitting from the unique advantages of SeS2 and the rationally designed host framework, this new cathode material demonstrates a feasible strategy to overcome the bottlenecks of current Li–S systems for high energy density rechargeable batteries.  相似文献   
997.
An advanced electro-active dry adhesive,which was composed of a mushroom-shaped fibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs),was developed to imitate the actuation of a gecko's toe.The properties of the NCNC-reinforced Nafion membrane,the electromechanical properties of the NCNC-reinforced IPMC,and the related electro-active adhesion ability were investigated.The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane,and there was a seamless connection with no clear interface between the dry adhesive and the IPMC.Our 0.1 wt% NCNC/Nafion-IPMC actuator shows a displacement and force that are 1.6-2 times higher than those of the recast Nafion-IPMC.This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nafion membrane,as well as interactions between the NCNCs and the sulfonated groups of the Nafion.The NCNC/Nafion-IPMC was used to effectively actuate the mushroom-shaped dry adhesive.The normal adhesion forces were 7.85 mN,12.1 mN,and 51.7 mN at sinusoidal voltages of 1.5 V,2.5 V,and 3.5 V,respectively,at 0.1 Hz.Under the bionic leg trail,the normal and shear forces were approximately 713.5 mN (159 mN·cm-2) and 1256.6 mN (279 mN·cm-2),respectively,which satisfy the required adhesion.This new electro-active dry adhesive can be applied for active,distributed actuation and flexible grip in robots.  相似文献   
998.
C2–C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2–C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2–C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2–C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.  相似文献   
999.
OBJECT: Preoperative knowledge of meningioma grade is essential for planning treatment and surgery. The purpose of this study was to investigate the diagnostic value of MRI texture and shape analysis in grading meningiomas. METHODS: A surgical database was reviewed to identify meningioma patients who had undergone tumor resection between January 2015 and December 2016. Preoperative MR images were retrieved and analyzed. Texture and shape analysis was conducted to quantitatively evaluate tumor heterogeneity and morphology. Three machine learning classifiers were trained with these features to build classification models. The performance of the features and classification models was assessed. RESULTS: A total of 131 patients were included in this study: 21 with high-grade meningiomas and 110 with low-grade meningiomas. Three texture features were selected: Horzl_RLNonUni, S(2,2)SumOfSqs, and WavEnHL_s-3; three shape features were selected: GeoFv, GeoW4, and GeoW5b. The Mann–Whitney test indicated that all six features were significantly different between high-grade and low-grade meningiomas. AUC values were generally greater than 0.50 (range, 0.73 to 0.88). Sensitivities and specificities ranged from 47.62% to 90.48% and 69.09% to 96.36%, respectively. Among the nine classification models obtained, the one built by training the SVM classifier with all six features achieved the best performance, with a sensitivity, specificity, diagnostic accuracy, and AUC of 0.86, 0.87, 0.87, and 0.87, respectively. CONCLUSIONS: Texture and shape analysis, especially when combined with a SVM classifier, can provide satisfactory performance in the preoperative determination of meningioma grade and is thus potentially useful for clinical application.  相似文献   
1000.
黄檗(Phellodendron amurense Rupr.)为我国二级重点保护野生植物,在北京地区黄檗多散生于阔叶林中,数量稀少。为了解北京地区黄檗分布与环境因子的关系,促进种群扩繁,在北京百花山、松山和雾灵山自然保护区共设置了12个20 m×20 m的样地,利用CCA分析方法对不同地点黄檗的生长分布状况与海拔、坡度、坡向、郁闭度、土壤pH值、碱解氮和土壤有机质等11个环境因子的关系进行了分析。结果显示,CCA排序第一轴主要反映了海拔、郁闭度和坡度的变化,第二轴主要反映了有机质含量、碱解氮含量、pH值和坡向的变化,其中海拔、碱解氮和土壤有机质是影响黄檗生长分布的重要环境因子,低海拔、低碱解氮含量以及土壤有机质高的地段适宜黄檗分布。对影响黄檗分布的环境因子进行定量分离,结果发现环境因子对黄檗样地物种分布的解释能力为84.5%,显示出较好的排序效果,黄檗分布点受人为干扰较少,其所在植物群落与环境保持了良好的对应关系;环境因子与物种分布呈显著相关(P=0.03),表明CCA排序结果可以解释环境因子对物种分布的影响程度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号