首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59584篇
  免费   4782篇
  国内免费   4784篇
  69150篇
  2024年   155篇
  2023年   829篇
  2022年   1920篇
  2021年   3175篇
  2020年   2174篇
  2019年   2645篇
  2018年   2439篇
  2017年   1863篇
  2016年   2633篇
  2015年   3742篇
  2014年   4515篇
  2013年   4584篇
  2012年   5478篇
  2011年   4929篇
  2010年   2971篇
  2009年   2692篇
  2008年   3026篇
  2007年   2700篇
  2006年   2311篇
  2005年   1945篇
  2004年   1558篇
  2003年   1465篇
  2002年   1105篇
  2001年   941篇
  2000年   912篇
  1999年   821篇
  1998年   509篇
  1997年   465篇
  1996年   494篇
  1995年   423篇
  1994年   419篇
  1993年   331篇
  1992年   449篇
  1991年   325篇
  1990年   285篇
  1989年   263篇
  1988年   211篇
  1987年   196篇
  1986年   178篇
  1985年   157篇
  1984年   117篇
  1983年   125篇
  1982年   81篇
  1981年   45篇
  1980年   54篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
191.
The dynamics of postural control in human biped locomotion were studied using(1) a model, and(2) experimentally applied impulsive force disturbances. The model was planar, and contained five rigid segments, articulating at frictionless pin joints. The model was used to identify joint torque combinations which would successfully correct for an impulsive force disturbance applied at different points in the walking cycle. The simulation results suggested that(1) early responses (within 80ms) can be effective in compensating for impulsive disturbances,(2) the same strategies which successfully counteract similar disturbances during quiet standing are also effective in certain phases of the walking cycle,(3) modifications in the response strategies are needed to accomodate differences in the dynamics over the stride cycle, and(4) the swing leg is ineffective in compensating for disturbances in the short term. These model predictions were tested experimentally. Subject responses to an impulsive force disturbance applied during walking were studied. The electromyographic results generally support the model predictions.  相似文献   
192.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
193.
杨洋  刘冬生 《生命科学》2008,20(3):358-363
i-motif结构是一种特殊的DNA二级结构,它是由四个胞嘧啶重复序列在质子的参与下形成的四链螺旋,该结构只有在酸性环境才能维持,因此可以将其设计成一个质子驱动的纳米级分子机器。本文通过与其它DNA分子机器比较,详述了质子驱动的分子机器的工作机理,评价了该机器的优越性、做功能力,并介绍了其多方面应用。  相似文献   
194.
Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF‐E2‐related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe2+. Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe2+ on Nrf2 expression. The results demonstrated that 24‐h Fe2+ exposure exerted time‐ and concentration‐dependent cytotoxicity in astrocytes. Furthermore, Fe2+ exposure in astrocytes resulted in time‐ and concentration‐dependent increases in Nrf2 expression, which preceded Fe2+ toxicity. Nrf2‐specific siRNA further knocked down Nrf2 levels, resulting in greater Fe2+‐induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self‐defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe2+‐induced neurotoxicity.  相似文献   
195.
HPLC6 is the major component of liver-type antifreeze polypeptides (AFPs) from the winter flounder, Pleuronectes americanus. To facilitate mutagenesis studies of this protein, a gene encoding the 37-amino acid mature polypeptide was chemically synthesized and cloned into the Tac cassette immediately after the bacterial ompA leader sequence for direct excretion of the AFP into the culture medium. Escherichia coli transformant with the construct placIQpar8AF was cultured in M9 medium. The recombinant AFP (rAFP) was detected by a competitive enzyme-linked immunosorbent assay (ELISA). After IPTG induction, a biologically active rAFP was expressed. The majority of the rAFP was excreted into the culture medium with only trace amounts trapped in the periplasmic space and cytoplasm. After 18 h of induction, the accumulated rAFP in the culture medium amounted to about 16 mg/L. The excreted AFP was purified from the culture medium by a single-step reverse-phase HPLC. Mass spectrometric and amino acid composition analyses confirmed the identity of the purified product. The rAFP, which lacked amidation at the C-terminal, was about 70% active when compared to the amidated wild-type protein, thus confirming the importance of C-terminal cap structure in protein stability and function.  相似文献   
196.
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet–SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases.  相似文献   
197.
Zeng Y  Yang X  Wang J  Fan J  Kong Q  Yu X 《PloS one》2012,7(1):e30312
Autophagy is a lysosomal degradation pathway that is essential for cell survival and tissue homeostasis. However, limited information is available about autophagy in aristolochic acid (AA) nephropathy. In this study, we investigated the role of autophagy and related signaling pathway during progression of AAI-induced injury to renal tubular epithelial cells (NRK52E cells). The results showed that autophagy in NRK52E cells was detected as early as 3-6 hrs after low dose of AAI (10 μM) exposure as indicated by an up-regulated expression of LC3-II and Beclin 1 proteins. The appearance of AAI-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in NRK52E cells provided further evidence for autophagy. However, cell apoptosis was not detected until 12 hrs after AAI treatment. Blockade of autophagy with Wortmannin or 3-Methyladenine (two inhibitors of phosphoinositede 3-kinases) or small-interfering RNA knockdown of Beclin 1 or Atg7 sensitized the tubular cells to apoptosis. Treatment of NRK52E cells with AAI caused a time-dependent increase in extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity, but not c-Jun N-terminal kinase (JNK) and p38. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased AAI-induced autophagy that was accompanied by an increased apoptosis. Taken together, our study demonstrated for the first time that autophagy occurred earlier than apoptosis during AAI-induced tubular epithelial cell injury. Autophagy induced by AAI via ERK1/2 pathway might attenuate apoptosis, which may provide a protective mechanism for cell survival under AAI-induced pathological condition.  相似文献   
198.
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources.  相似文献   
199.
200.
Castration-resistant progression of prostate cancer after androgen deprivation therapies remains the most critical challenge in the clinical management of prostate cancer. Resurgent androgen receptor (AR) activity is an established driver of castration-resistant progression, and upregulation of the full-length AR (AR-FL) and constitutively-active AR splice variants (AR-Vs) has been implicated to contribute to the resurgent AR activity. We reported previously that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) can reduce the abundance of both AR-FL and AR-Vs. In the present study, we further showed that the effect of PPD on AR expression and target genes was independent of androgen. PPD treatment resulted in a suppression of ligand-independent AR transactivation. Moreover, PPD delayed castration-resistant regrowth of LNCaP xenograft tumors after androgen deprivation and inhibited the growth of castration-resistant 22Rv1 xenograft tumors with endogenous expression of AR-FL and AR-Vs. This was accompanied by a decline in serum prostate-specific antigen levels as well as a decrease in AR levels and mitoses in the tumors. Notably, the 22Rv1 xenograft tumors were resistant to growth inhibition by the next-generation anti-androgen enzalutamide. The present study represents the first to show the preclinical efficacy of PPD in inhibiting castration-resistant progression and growth of prostate cancer. The findings provide a rationale for further developing PPD or its analogues for prostate cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号