首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21376篇
  免费   1972篇
  国内免费   2428篇
  25776篇
  2024年   70篇
  2023年   333篇
  2022年   689篇
  2021年   1120篇
  2020年   818篇
  2019年   1004篇
  2018年   992篇
  2017年   657篇
  2016年   907篇
  2015年   1363篇
  2014年   1685篇
  2013年   1747篇
  2012年   2105篇
  2011年   1893篇
  2010年   1196篇
  2009年   1159篇
  2008年   1214篇
  2007年   1128篇
  2006年   916篇
  2005年   772篇
  2004年   692篇
  2003年   589篇
  2002年   496篇
  2001年   340篇
  2000年   318篇
  1999年   280篇
  1998年   200篇
  1997年   165篇
  1996年   160篇
  1995年   97篇
  1994年   128篇
  1993年   72篇
  1992年   89篇
  1991年   69篇
  1990年   62篇
  1989年   43篇
  1988年   35篇
  1987年   23篇
  1986年   18篇
  1985年   29篇
  1984年   15篇
  1983年   19篇
  1982年   15篇
  1980年   7篇
  1978年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1968年   3篇
  1965年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
151.
152.
Ginseng and the seed of Zizyphus jujuba var. spinosa, which are traditional Chinese medicinal materials, were often used in ancient Chinese recipes as a pair of medicines. They can replenish the primordial qi and tonify the spleen. This study investigated the effects of ginseng and the seed of Zizyphus jujuba var. spinosa (GS) extract on gut microbiota diversity in rats with spleen deficiency syndrome (SDS). A total of 52 compounds (including 16 flavonoids, 35 saponins, and 1 alkaloid) were identified and analyzed from the GS extract by UPLC‐Q‐Orbitrap‐MS/MS. The GS extract significantly increased the relative abundance of Firmicutes and Bacteroidetes in rats with SDS but decreased that of Proteobacteria and Actinobacteria. At the genus level, the GS extract significantly increased the relative abundance of Lactobacillus and Bifidobacterium in rats with SDS but decreased that of Streptococcus, Escherichia‐Shigella, Veillonella, and Enterococcus. In addition, the GS extract influenced glucose and amino acid metabolism. In summary, the results showed that the GS extract changed the structure and diversity of gut microbiota in rats with SDS and balanced the metabolic process.  相似文献   
153.
The emodin anthraquinone derivatives are generally used in traditional Chinese medicine due to their various pharmacological activities. In the present study, a series of emodin anthraquinone derivatives have been designed and synthesized, among which 1,3‐dihydroxy‐6,8‐dimethoxyanthracene‐9,10‐dione is a natural compound that has been synthesized for the very first time, and 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione is a compound that has never been reported earlier. Interestingly, while total seven of these compounds showed neuraminidase inhibitory activity in influenza virus with inhibition rate more than 50 %, specific four compounds exhibited significant inhibition of tumor cell proliferation. The further results demonstrate that 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione showed the best anticancer activity among all the synthesized compounds by inducing highest apoptosis rate to HCT116 cancer cells and arresting their G0/G1 cell cycle phase, through elevation of intracellular level of reactive oxygen species (ROS). Moreover, the binding of 1,3‐dimethoxy‐5,8‐dimethylanthracene‐9,10‐dione with BSA protein has thoroughly been investigated. Altogether, this study suggests the neuraminidase inhibitory activity and antitumor potential of the new emodin anthraquinone derivatives.  相似文献   
154.
Low electron/proton conductivities of electrochemical catalysts, especially earth‐abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple‐phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (≈0.1 mg cm?2) augments reaction sites from 1D to 2D, resulting in an 18‐fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar‐electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity‐determining and Debye‐length‐determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high‐efficiency electrochemical energy conversion devices.  相似文献   
155.
156.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   
157.
Gao  Feng  Zhao  Shanshan  Men  Shuzhen  Kang  Zhensheng  Hong  Jian  Wei  Chunhong  Hong  Wei  Li  Yi 《中国科学:生命科学英文版》2020,63(11):1703-1713

RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.

  相似文献   
158.
Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co‐existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal‐mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.  相似文献   
159.
160.
Feng  Chunyan  Zhang  Min  Bhandari  Bhesh 《Food biophysics》2020,15(2):240-248

The main purpose of this paper is to explore the opportunities for fresh Nostoc sphaeroides (N. sphaeroides) to be applied to 3D food printing. N. sphaeroides is rich in nutrients and its paste possesses shear thinning properties. It was found the product obtained by 3D food printing with fresh N. sphaeroides had poor printability and was easy to collapse. In this study, we compared the addition of different potato starch (2%, 4%, 6% and 8%) to the characteristics of 3D printing of the N. sphaeroides gel system. The results obtained from the rheological analysis showed that the 6% potato starch added to of N. sphaeroides gel can be utilized for 3D food printing. The addition of potato starch increased the viscosity of the mixture so the printed lines were not easily broken, and the “self-supporting ability” of the material itself was enhanced to maintain a good shape without collapse. Texture profile analysis also showed that the 6% starch added printed product had the best gumminess parameter. In order to get a better printed product, the effects of printing parameters (nozzle diameter (Dn), extrusion rate (Vd) and nozzle moving speed (Vn)) on material printing performance and product formability was tested. When Dn, Vd, Vn were = 1.2 mm, 20 mm3/s, 25 mm/s, respectively, the printed product was having similar to the target product, with less breakage and less the changing of shape. Overall results show that 3D printing technology is a rising method for producing N. sphaeroides-based new products.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号