首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126862篇
  免费   3510篇
  国内免费   6002篇
  136374篇
  2024年   122篇
  2023年   506篇
  2022年   1178篇
  2021年   1883篇
  2020年   1367篇
  2019年   1746篇
  2018年   13109篇
  2017年   11625篇
  2016年   8935篇
  2015年   2990篇
  2014年   3183篇
  2013年   3291篇
  2012年   7715篇
  2011年   15828篇
  2010年   13876篇
  2009年   9971篇
  2008年   11720篇
  2007年   13089篇
  2006年   1893篇
  2005年   1846篇
  2004年   2054篇
  2003年   2043篇
  2002年   1639篇
  2001年   800篇
  2000年   632篇
  1999年   457篇
  1998年   290篇
  1997年   280篇
  1996年   239篇
  1995年   184篇
  1994年   186篇
  1993年   152篇
  1992年   153篇
  1991年   141篇
  1990年   85篇
  1989年   83篇
  1988年   79篇
  1987年   53篇
  1986年   52篇
  1985年   60篇
  1984年   30篇
  1983年   46篇
  1982年   31篇
  1981年   23篇
  1979年   20篇
  1972年   252篇
  1971年   282篇
  1965年   13篇
  1962年   24篇
  1944年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A viable option for increasing nitrogen (N) use efficiency and mitigation of negative impacts of N on the environment is to capitalize on multi-element interactions through implementation of nutrient management programs that provide balanced nutrition. Numerous studies have demonstrated the immediate efficacy of this approach in the developing regions like China and India as well as developed countries in North America. Based on 241 site-years of experiments in these countries, the first-year N recovery efficiency (RE) for the conventional or check treatments averaged 21% while the balanced treatments averaged 54% RE, for an average increase of 33% in RE due to balanced nutrition. Effective policies to promote adoption are most likely those that enable site-specific approaches to nutrient management decisions rather than sweeping, nation-wide incentives supporting one nutrient over another. Local farmers, advisers and officials need to be empowered with tools and information to help them define necessary changes in practices to create more balanced nutrient management.  相似文献   
992.
993.
The inability of cells to maintain protein folding homeostasis is implicated in the development of neurodegenerative diseases, malignant transformation, and aging. We find that multiphoton fluorescence imaging of 1-anilinonaphthalene-8-sulfonate (ANS) can be used to assess cellular responses to protein misfolding stresses. ANS is relatively nontoxic and enters live cells and cells or tissues fixed in formalin. In an animal model of Alzheimer’s disease, ANS fluorescence imaging of brain tissue sections reveals the binding of ANS to fibrillar deposits of amyloid peptide (Aβ) in amyloid plaques and in cerebrovascular amyloid. ANS imaging also highlights non-amyloid deposits of glial fibrillary acidic protein in brain tumors. Cultured cells under normal growth conditions possess a number of ANS-binding structures. High levels of ANS fluorescence are associated with the endoplasmic reticulum (ER), Golgi, and lysosomes—regions of protein folding and degradation. Nuclei are virtually devoid of ANS binding sites. Additional ANS binding is triggered by hyperthermia, thermal lesioning, proteasome inhibition, and induction of ER stress. We also use multiphoton imaging of ANS binding to follow the in vivo recovery of cells from protein-damaging insults over time. We find that ANS fluorescence tracks with the binding of the molecular chaperone Hsp70 in compartments where Hsp70 is present. ANS highlights the sensitivity of specific cellular targets, including the nucleus and particularly the nucleolus, to thermal stress and proteasome inhibition. Multiphoton imaging of ANS binding should be a useful probe for monitoring protein misfolding stress in cells.  相似文献   
994.
蛋白质组学是后基因组时代的新兴研究领域,详细介绍了蛋白质组学的原理和方法在农业生物科学研究中的最新应用进展,提出了蛋白质组学技术目前所面临的问题,并展望了今后的发展前景.  相似文献   
995.
A cytoplasmic NADH oxidase (NOX) was purified from a soil bacteria, Brevibacterium sp. KU1309, which is able to grow in the medium containing 2-phenylethanol as the sole source of carbon under an aerobic condition. The enzyme catalyzed the oxidation of NADH to NAD+ involving two-electron reduction of O2 to H2O2. The molecular weight of the enzyme was estimated to be 102 kDa by gel filtration and 57 kDa by SDS-PAGE, which indicates that the NOX was a homodimer consisting of a single subunit. The enzyme was stable up to 70 degrees C at a broad range of pH from 7 to 11. The enzyme activity increased about ten-fold with the addition of ammonium salt, while it was inhibited by Zn2+ (39%), Cu2+ (41%), Hg2+ (72%) and Ag+ (37%). The enzyme acts on NADH, but not on NADPH. The regeneration of NAD+ utilizing this enzyme made selective oxidation of mandelic acid or L: -phenylalanine possible. This thermostable enzyme is expected to be applicable as a useful biocatalyst for NAD+ recycling.  相似文献   
996.
The effect of the microenvironment in alginate–chitosan–alginate (ACA) microcapsules with liquid core (LCM) and solid core (SCM) on the physiology and stress tolerance of Sacchromyces cerevisiae was studied. The suspended cells were used as control. Cells cultured in liquid core microcapsules showed a nearly twofold increase in the intracellular glycerol content, trehalose content, and the superoxide dismutase (SOD) activity, which are stress tolerance substances, while SCM did not cause the significant physiological variation. In accordance with the physiological modification after being challenged with osmotic stress (NaCl), oxidative stress (H2O2), ethanol stress, and heat shock stress, the cell survival in LCM was increased. However, SCM can only protect the cells from damaging under ethanol stress. Cells released from LCM were more resistant to hyperosmotic stress, oxidative stress, and heat shock stress than cells liberated from SCM. Based on reasonable analysis, a method was established to estimate the effect of microenvironment of LCM and SCM on the protection of cells against stress factors. It was found that the resistance of LCM to hyperosmotic stress, oxidative stress, and heat shock stress mainly depend on the domestication effect of LCM’s microenvironment. The physical barrier of LCM constituted by alginate–chitosan membrane and liquid alginate matrix separated the cells from the damage of oxidative stress and ethanol stress. The significant tolerance against ethanol stress of SCM attributed to the physical barrier consists of solid alginate–calcium matrix and alginate–chitosan membrane.  相似文献   
997.
The biological effects of rare-earth ions on the organism have been studied using Pr3+ as a probe ion and Escherichia coli cell as a target. Atomic force microscopy (AFM) observation of the surface of E. coli cells shows that the presence of Pr3+ substantially changes the structure of the outer membrane. By induced coupled plasma-mass spectrometry (ICP-MS), more Cu2+ was found in the cells grown in the presence of Pr3+, indicating changes of cell permeability. Using energy dispersive X-ray spectroscopy (EDX), Ca2+ is found on the outer surface of the original cell. It is proposed that Pr3+ can replace Ca2+ from the binding sites because of their close ionic radii and similar ligand speciality.  相似文献   
998.
从解淀粉芽孢杆菌Baillus amyloliquefaciens CICIM B2125中克隆了BamHI甲基转移酶基因(bamHIM),并在大肠杆菌JM109中得到了成功表达.该基因含有1 271 bp的开放阅读框(ORF),编码423个氨基酸,成熟蛋白分子量为49 kD.该基因在自身启动子引导下,表达了具有活性的BamHI甲基转移酶(M.BamHI).该酶可以将BamHI位点的碱基甲基化.氨基酸序列分析表明该酶存在有NADB_Rossmann结构域.  相似文献   
999.
高巍  孙庆林 《生物技术》2010,20(1):86-89
目的:对羊血进行提取SOD。方法:采用有机溶剂去除血红蛋白、热变性、丙酮沉淀、DEAE-32离子交换柱层析的方法,对羊红细胞Cu,Zn-SOD进行分离纯化。利用非变性凝胶电泳NBT活性染色鉴定SOD,SDS-PAGE测定分子量。结果:表明1 000ml羊血中得到SOD干粉1 257mg,总活力为79 453U,比活力为3 871.4U/mg。活性染色结果证明羊血SOD有2条带,表明已达到电泳纯。SDS-PAGE测得SOD亚基分子量分别为16.71kDa、15.97kDa。H2O2对羊血CuZn-SOD活性有抑制作用,通过紫外光谱扫描,羊血SOD在231nm处有最大吸收峰。  相似文献   
1000.
Phenotypic plasticity may allow an organism to adjust its phenotype to environmental needs. However, little is known about environmental effects on offspring biochemical composition and turnover rates, including energy budgets and developmental costs. Using the tropical butterfly Bicyclus anynana and employing a full-factorial design with two oviposition and two developmental temperatures, we explore the consequences of temperature variation on egg and hatchling composition, and the associated use and turnover of energy and egg compounds. At the lower temperature, larger but fewer eggs were produced. Larger egg sizes were achieved by provisioning these eggs with larger quantities of all compounds investigated (and thus more energy), whilst relative egg composition was rather similar to that of smaller eggs laid at the higher temperature. Turnover rates during embryonic development differed across developmental temperatures, suggesting an emphasis on hatchling quality (i.e. protein content) at the more stressful lower temperature, but on storage reserves (i.e. lipids) at the higher temperature. These differences may represent adaptive maternal effects. Embryonic development was much more efficient at the lower temperature, providing a possible mechanism underlying the temperature-size rule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号