首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7916篇
  免费   706篇
  国内免费   572篇
  9194篇
  2024年   20篇
  2023年   114篇
  2022年   278篇
  2021年   447篇
  2020年   299篇
  2019年   349篇
  2018年   326篇
  2017年   233篇
  2016年   384篇
  2015年   508篇
  2014年   653篇
  2013年   594篇
  2012年   713篇
  2011年   606篇
  2010年   421篇
  2009年   333篇
  2008年   413篇
  2007年   397篇
  2006年   289篇
  2005年   250篇
  2004年   198篇
  2003年   187篇
  2002年   135篇
  2001年   141篇
  2000年   129篇
  1999年   146篇
  1998年   88篇
  1997年   77篇
  1996年   67篇
  1995年   48篇
  1994年   56篇
  1993年   31篇
  1992年   49篇
  1991年   39篇
  1990年   23篇
  1989年   31篇
  1988年   22篇
  1987年   29篇
  1986年   13篇
  1985年   20篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有9194条查询结果,搜索用时 0 毫秒
81.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   
82.
Purpose: Cervical cancer (CC) is one of the most general gynecological malignancies and is associated with high morbidity and mortality. We aimed to select candidate genes related to the diagnosis and prognosis of CC.Methods: The mRNA expression profile datasets were downloaded. We also downloaded RNA-sequencing gene expression data and related clinical materials from TCGA, which included 307 CC samples and 3 normal samples. Differentially expressed genes (DEGs) were obtained by R software. GO function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed in the DAVID dataset. Using machine learning, the optimal diagnostic mRNA biomarkers for CC were identified. We used qRT-PCR and Human Protein Atlas (HPA) database to exhibit the differences in gene and protein levels of candidate genes.Results: A total of 313 DEGs were screened from the microarray expression profile datasets. DNA methyltransferase 1 (DNMT1), Chromatin Assembly Factor 1, subunit B (CHAF1B), Chromatin Assembly Factor 1, subunit A (CHAF1A), MCM2, CDKN2A were identified as optimal diagnostic mRNA biomarkers for CC. Additionally, the GEPIA database showed that the DNMT1, CHAF1B, CHAF1A, MCM2 and CDKN2A were associated with the poor survival of CC patients. HPA database and qRT-PCR confirmed that these genes were highly expressed in CC tissues.Conclusion: The present study identified five DEmRNAs, including DNMT1, CHAF1B, CHAF1A, MCM2 and Kinetochore-related protein 1 (KNTC1), as potential diagnostic and prognostic biomarkers of CC.  相似文献   
83.
84.
Zhang  Keji  Gao  Yuan  Deng  Yuxiao  Zhou  Xiao  Zhu  Changqing  He  Zhengyu  Lv  Dan 《Molecular and cellular biochemistry》2021,476(1):93-107
Molecular and Cellular Biochemistry - Mesenchymal stem cells (MSCs) can alleviate acute respiratory distress syndrome (ARDS), but the mechanisms involved are unclear, especially about their...  相似文献   
85.
Shao  Xiao  Liu  Zhaozheng  Liu  Shanshan  Lin  Na  Deng  Yue 《Molecular and cellular biochemistry》2021,476(4):1783-1795
Molecular and Cellular Biochemistry - Non-coding RNAs (ncRNAs) have shown to act as crucial mediators in atherosclerosis (AS) development. The purpose of our study was to explore the role of...  相似文献   
86.
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.  相似文献   
87.
BackgroundIn mammals, early pregnancy is a critical vulnerable period during which complications may arise, including pregnancy failure. Establishment of a maternal endometrial acceptance phenotype is a prerequisite for semiheterogeneous embryo implantation, comprising the rate‐limiting step of early pregnancy.MethodsConfocal fluorescence, immunohistochemistry and western blot for nuclear and cytoplasmic protein were used to examine the activation of yes‐associated protein (YAP) in uterine tissue and primary endometrial cells. The target binding between miR16a and YAP was verified by dual‐luciferase reporter gene assay. The mouse pregnancy model and pseudopregnancy model were used to investigate the role of YAP in the maternal uterus during early pregnancy in vivo.ResultsWe showed that YAP translocates into the nucleus in the endometrium of cattle and mice during early pregnancy. Mechanistically, YAP acts as a mediator of ECM rigidity and cell density, which requires the actomyosin cytoskeleton and is partially dependent on the Hippo pathway. Furthermore, we found that the soluble factor IFNτ, which is a ruminant pregnancy recognition factor, also induced activation of YAP by reducing the expression of miR‐16a.ConclusionsThis study revealed that activation of YAP is necessary for early pregnancy in bovines because it induced cell proliferation and established an immunosuppressive local environment that allowed conceptus implantation into the uterine epithelium.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号