首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39216篇
  免费   2980篇
  国内免费   2930篇
  2024年   54篇
  2023年   477篇
  2022年   1130篇
  2021年   2164篇
  2020年   1431篇
  2019年   1942篇
  2018年   1771篇
  2017年   1209篇
  2016年   1807篇
  2015年   2504篇
  2014年   2985篇
  2013年   3276篇
  2012年   3622篇
  2011年   3233篇
  2010年   1898篇
  2009年   1769篇
  2008年   2037篇
  2007年   1781篇
  2006年   1491篇
  2005年   1151篇
  2004年   981篇
  2003年   903篇
  2002年   683篇
  2001年   617篇
  2000年   575篇
  1999年   529篇
  1998年   358篇
  1997年   341篇
  1996年   332篇
  1995年   298篇
  1994年   276篇
  1993年   194篇
  1992年   274篇
  1991年   225篇
  1990年   159篇
  1989年   133篇
  1988年   103篇
  1987年   94篇
  1986年   62篇
  1985年   67篇
  1984年   34篇
  1983年   38篇
  1982年   25篇
  1981年   24篇
  1980年   12篇
  1979年   14篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   
962.
Molecular dynamics simulation was applied to investigate the sensitivities of perfect and defective RDX (cyclotrimethylene trinitramine) crystals, as well as their PBXs (polymer-bonded explosives) with the polymeric binder F2311, in the NPT (constant number of particles, constant pressure, constant temperature) ensemble using the COMPASS force field. Five kinds of defects—two dislocations, one vacancy, and two types of doping—were considered separately. The bond length distribution and the maximum (L max) and average (L ave) bond lengths of the N–NO2 trigger bonds in RDX were obtained and their relationships to the sensitivities of RDX and PBXs are discussed. L max was found to be an important structural parameter for judging the relative sensitivity, and defects were observed to have little effect on the sensitivities of PBXs, due to the strong desensitizing effect of the polymer F2311.  相似文献   
963.
BMS-488043, like its predecessor BMS-378806, is a small molecule that can block the interactions between gp120 and CD4, and has shown good clinical efficacy. However, the crystal structure of drug-gp120 complexes or the full-length gp120 free of bound ligand is unpublished until now. Docking combined with molecular dynamics simulation is used to investigate the binding mode between BMS-488043 and gp120. On the basis of the analysis of the simulated results, the plausible binding mode is acquired, such as the changes of binding mode in the trajectory and the calculated binding free energy. Subsequently, a number of residues which make contacts with the small molecule are studied by binding free energy decomposition to understand the mutation experiments, such as Trp427, Ser375, and Thr257 residues with the help of the acquired binding mode above. Especially, the importance of the hydrophobic groove formed by residues Ile371 and Gly472 which bind BMS-488043 is elaborated, which has not been explored much. In addition, theoretical investigations on the dynamics behavior of the gp120 associated with BMS-488043 enhanced binding are performed; the results indicate that the BMS-488043 may be more deeply inserted into the Phe43 cavity compared with the previous binding mode acquired by docking.  相似文献   
964.
The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed.
Figure
Carboxyl hydroxamic acids with different number of polar groups on the surfaces of diaspore (010) and kaolinite (001)  相似文献   
965.
In the synthesis of cyanuric acid from NH3 and CO2, urea and isocyanic acid OCNH are two pivotal intermediates. Based on density functional theory (DFT) calculations, the synthesis mechanism of cyanuric acid from NH3 + CO2 was investigated systematically. Urea can be synthesized from NH3 and CO2, and cyanuric acid can be obtained from urea or NH3 + CO2. In the stepwise mechanism of cyanuric acid from urea or NH3 + CO2, the energy barriers are relatively high, and the condition of high pressure and temperature does not decrease the energy barriers. Our theoretical model shows that cyanuric acid is actually acquired from OCNH via a one-step cycloaddition reaction.
Figure
The synthesis mechanism of cyanuric acid from NH3 and CO2 was revealed systematically with density functional theory methods relative to 3NH3 + 3CO2  相似文献   
966.
The B3LYP/6-31G (d) method of density functional theory (DFT) was used to study molecular geometry, electronic structure, infrared spectrum (IR) and thermodynamic properties. The heat of formation (HOF) and calculated density were estimated to evaluate the detonation properties using Kamlet–Jacobs equations. Thermal stability of 3,5,7,10,12,14,15,16-octanitro- 3,5,7,10,12,14,15,16-octaaza-heptacyclo[7.5.1.12,8.01,11.02,6.04,13.06,11]hexadecane (cage-tetranitrotetraazabicyclooctane) was investigated by calculating the bond dissociation energy (BDE) at unrestricted B3LYP/6-31G (d) level. The calculated results show that the N–NO2 bond is a trigger bond during thermolysis initiation process. The crystal structure obtained by molecular mechanics (MM) methods belongs to Pna21 space group, with cell parameters a?=?12.840 Å, b?=?9.129 Å, c?=?14.346 Å, Z?=?6 and ρ?=?2.292 g·cm?3. Both the detonation velocity of 9.96 km·s?1 and the detonation pressure of 47.47 GPa are better than those of CL-20. According to the quantitative standard of energetics and stability, as a high energy density compound (HEDC), cage-tetranitrotetraazabicyclooctane essentially satisfies this requirement.  相似文献   
967.
MP2(full)/aug-cc-pVDZ(-PP) computations predict that new triangular bonding complexes (where X? is a halide and H–C refers to a protic solvent molecule) consist of one halogen bond and two hydrogen bonds in the gas phase. Carbon tetrabromide acts as the donor in the halogen bond, while it acts as an acceptor in the hydrogen bond. The halide (which commonly acts as an acceptor) can interact with both carbon tetrabromide and solvent molecule (CH3CN, CH2Cl2, CHCl3) to form a halogen bond and a hydrogen bond, respectively. The strength of the halogen bond obeys the order CBr4???Cl? > CBr4???Br? > CBr4???I?. For the hydrogen bonds formed between various halides and the same solvent molecule, the strength of the hydrogen bond obeys the order C-H???Cl? > C-H???Br? > C-H???I?. For the hydrogen bonds formed between the same halide and various solvent molecules, the interaction strength is proportional to the acidity of the hydrogen in the solvent molecule. The diminutive effect is present between the hydrogen bonds and the halogen bond in chlorine and bromine triangular bonding complexes. Complexes containing iodide ion show weak cooperative effects.
Figure
The triangular bonding complexes consisting of halogen bond and hydrogen bonds were predict in the gas phase by computational quantum chemistry.  相似文献   
968.
Understanding the electron and phonon transport characteristics is crucial for designing and developing high performance thermoelectric materials. Weak scattering effects on charge carriers, characterized by deformation potential and alloy scattering potential, are favorable for thermoelectric solid solutions to enable high carrier mobility and thereby promising thermoelectric performance. Mg2(Si,Sn) solid solutions have attracted much attention due to their low cost and environmental compatibility. Usually, their high thermoelectric performance with ZT ~ 1 is ascribed to the band convergence and reduced lattice thermal conductivity caused by alloying. In this work, both a low deformation potential Ξ = 13 eV and a low alloy scattering potential U = 0.7 eV are found for the thermoelectric alloys by characterizing and modeling of thermoelectric transport properties. The band convergence is also verified by the increased density‐of‐states effective mass. It is proposed that, in addition to band convergence and reduced lattice thermal conductivity, the low deformation potential and alloy scattering potential are additional intrinsic features that contribute to the high thermoelectric performance of the solid solutions.  相似文献   
969.
970.
[首页] « 上一页 [92] [93] [94] [95] [96] 97 [98] [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号