首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44479篇
  免费   3718篇
  国内免费   3668篇
  51865篇
  2024年   109篇
  2023年   623篇
  2022年   1507篇
  2021年   2461篇
  2020年   1682篇
  2019年   2215篇
  2018年   2082篇
  2017年   1478篇
  2016年   2077篇
  2015年   2782篇
  2014年   3375篇
  2013年   3579篇
  2012年   4005篇
  2011年   3634篇
  2010年   2129篇
  2009年   1997篇
  2008年   2301篇
  2007年   2017篇
  2006年   1649篇
  2005年   1352篇
  2004年   1214篇
  2003年   1179篇
  2002年   970篇
  2001年   854篇
  2000年   737篇
  1999年   662篇
  1998年   413篇
  1997年   363篇
  1996年   367篇
  1995年   301篇
  1994年   293篇
  1993年   207篇
  1992年   257篇
  1991年   242篇
  1990年   175篇
  1989年   130篇
  1988年   107篇
  1987年   94篇
  1986年   54篇
  1985年   67篇
  1984年   29篇
  1983年   36篇
  1982年   21篇
  1981年   22篇
  1980年   9篇
  1979年   6篇
  1965年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Phosphorus is a macronutrient that is essential for plant survival. Most land plants have evolved the ability to form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which enhances phosphate (Pi) acquisition. Modulation of Pi transporter systems is the master strategy used by mycorrhizal plants to adapt to ambient Pi concentrations. However, the specific functions of PHOSPHATE TRANSPORTER 1 (PHT1) genes, which are Pi transporters that are responsive to high Pi availability, are largely unknown. Here, we report that AsPT5, an Astragalus sinicus (Chinese milk vetch) member of the PHT1 gene family, is conserved across dicotyledons and is constitutively expressed in a broad range of tissues independently of Pi supply, but is remarkably induced by indole-3-acetic acid (auxin) treatment under moderately high Pi conditions. Subcellular localization experiments indicated that AsPT5 localizes to the plasma membrane of plant cells. Using reverse genetics, we showed that AsPT5 not only mediates Pi transport and remodels root system architecture but is also essential for arbuscule formation in A. sinicus under moderately high Pi concentrations. Overall, our study provides insight into the function of AsPT5 in Pi transport, AM development and the cross-talk between Pi nutrition and auxin signalling in mycorrhizal plants.  相似文献   
993.
N6-methyladeosine (m6A) plays an important role in virus infection and replication. Bombyx mori nuclear polyhedrosis is caused by Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Expression levels of m6A-modification-related genes after the infection of BmNPV were detected at first. Then, expression levels of BmNPV nucleocapsid protein gene VP39 and envelope fusion protein gene GP64 after knockdown of METTL3in vitro were quantified to identify the effect of m6A modification on BmNPV. BmNPV firstly infects the larval midgut in case of oral infection. Subsequently, to clarify the relationship between m6A modification and resistance of the silkworm to BmNPV, we detected the expression levels of m6A-modification-related genes invivo before and after infection of BmNPV. The results indicated that low METTL3 level hindered the proliferation of BmNPV to some extent, and silkworm strain with low METTL3 level showed stronger resistance against BmNPV. This study will accumulate new experimental data for elucidating the resistance mechanism of silkworm against BmNPV.  相似文献   
994.
Microbial fuel cells (MFCs) represent a new biological method for generating electricity directly from biodegradable compounds. Efficiency of MFCs using manure as substrate is generally low. This study proposed a new design by incorporating biocathodes into a three-chamber MFC, which yielded maximum power densities much higher than those reported in literature. The new design placed cylindrical anode chamber for easy stirring and two symmetrical cathodic chambers with reduced anode-cathode distance. The biocathodes were applied to reduce charge transfer resistance. Additionally, biocathode microbial community was cultured to enrich favorable microorganisms. With external loading of 100 Ω, the power densities for new biocathode MFC using 2, 4, 6, 8 and 10% total solids diary manure reached 7.85±1.0 W m(-3), 7.84±1.20 W m(-3), 8.15±0.20 W m(-3), 7.60±0.97 W m(-3) and 5.63±0.97 W m(-3), respectively. The pH drop as a result of manure hydrolysis limited the power output. To provide detailed information of the microbial community in the biocathode MFC, the 454-pyrosequencing technique was adopted. The Firmicutes, γ-, β-, α- and δ-Proteobacteria, Bacteroidetes and Actinobacteria were the major groups on the anode, while γ-, β-, and α-Proteobacteria, Bacteroidetes and Actinobacteria were the predominant groups on the cathode.  相似文献   
995.
996.
S Liu  W Shi  H Xiao  X Liang  C Deng  Z Ye  P Mei  S Wang  X Liu  Z Shan  Y Liang  B Zhang  W Wang  Y Liu  L Xu  Y Xia  J Ma  Z Li 《PloS one》2012,7(7):e41331

Background

Glomerulosclerosis correlates with reduction in podocyte number that occurs through mechanisms which include apoptosis. Podocyte injury or podocyte loss in the renal glomerulus has been proposed as the crucial mechanism in the development of glomerulosclerosis. However, the mechanism by which podocytes respond to injury is poorly understood. TNF and TNF receptor superfamilies are important in the pathogenesis of podocyte injury and apoptosis. The ligand of receptor activator of NF-kappaB (RANKL) and receptor activator of NF-kappaB (RANK) are members of the TNF and receptor superfamilies. We investigated whether RANK - RANKL is a receptor - ligand complex for podocytes responding to injury.

Methodology/Principal Findings

In this study, RANKL and RANK were examined in human podocyte diseases and a rat model of puromycin aminonucleoside nephrosis (PAN). Compared with controls, RANK and RANKL were increased in both human podocyte diseases and the rat PAN model; double immunofluorescence staining revealed that RANK protein expression was mainly attributed to podocytes. Immunoelectron microscopy showed that RANK was localized predominantly at the top of the foot process membrane and the cytoplasm of rat podocyte. In addition, RANK was upregulated in mouse podocytes in vitro after injury induced by puromycin aminonucleoside (PA). Knockdown of RANK expression by small interference RNA (siRNA) exacerbated podocyte apoptosis induced by PA. However, RANKL inhibited significantly the apoptosis of podocytes induced by PA.

Conclusions/Significance

These findings suggest the increase in RANK–RANKL expression is a response to podocyte injury, and RANK–RANKL may be a novel receptor–ligand complex for the survival response during podocyte injury.  相似文献   
997.
半乳甘露聚糖植物胶加工是我国70年代中期兴起的新兴产业。本文从我国植物资源发展的角度。重点论证了瓜尔豆(Cyanopsis tetragonoloba(L.)Taubert.)、田菁(Sesbania cannabina(Retz.)Pers.)、胡芦巴(Trigonella foenum-graecum L.)的生产情况,认为胡芦巴适应性强、产量高、易于机械化大面积种植与轮作,并具有改良土壤以及经济效益好等优势。因此,发展半乳甘露聚糖胶资源,大量种植胡芦巴是最好的选择。  相似文献   
998.
999.
Bombyx mori nucleopolyhedrovirus (BmNPV) disease is one of the most serious silkworm diseases, and it has caused great economic losses to the sericulture industry. So far, the disease has not been controlled effectively by therapeutic agents. Breeding resistant silkworm varieties breeding may be an effective way to improve resistance to BmNPV and reduce economic losses. A precise resistance-detection method will help to accelerate the breeding process. For this purpose, here we described the individual inoculation method (IIM). Details of the IIM include pathogen BmNPV preparation, mulberry leaf size, pathogen volume, rearing conditions, course of infection, and breeding conditions. Finally, a resistance comparison experiment was performed using the IIM and the traditional group inoculation method (GIM). The incidence of BmNPV infection and the within-group variance results showed that the IIM was more precise and reliable than the GIM.  相似文献   
1000.
Switchgrass is considered one of the most promising energy crops. However, breeding of elite switchgrass cultivars is required to meet the challenges of large scale and sustainable biomass production. As a native perennial adapted to North America, switchgrass has lowland and upland ecotypes, where most lowland ecotypes are tetraploid (2n?=?4x?=?36), and most upland ecotypes are predominantly octoploid (2n?=?8x?=?72). Hybridization between lowland and upland switchgrass plants could identify new cultivars with heterosis. However, crossing between tetraploid and octoploid switchgrass is rare in nature. Therefore, in order to break down the cross incompatibility barrier between tetraploid lowland and octoploid upland switchgrass lines, we developed autoployploid switchgrass lines from an anueploid lowland cv. Alamo. In this study, colchicine was used in liquid and solid mediums to chemically induce chromosome doubling in embryogenic calli derived from cv. Alamo. Thirteen autopolyploid switchgrass lines were regenerated from seedlings and identified using flow cytometry. The autoplyploid switchgrass plants exhibited increased stomata aperture and stem size in comparison with the cv. Alamo. The most autooplyploid plants were regenerated from switchgrass calli that were treated with 0.04 % colchicine in liquid medium for 13 days. One autopolyploid switchgrass line, VT8-1, was successfully crossed to the octoploid upland cv. Blackwell. The autoployploid and the derived inter-ecotype hybrids were confirmed by in situ hybridization and molecular marker analysis. Therefore, the results of this study show that an autopolyploid, generated by chemically induced chromosome doubling of lowland cv. Alamo, is cross compatible with upland octoploid switchgrass cultivars. The outcome of this study may have significant applications in switchgrass hybrid breeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号