首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77517篇
  免费   6053篇
  国内免费   5209篇
  2024年   130篇
  2023年   942篇
  2022年   2232篇
  2021年   3809篇
  2020年   2474篇
  2019年   3177篇
  2018年   2940篇
  2017年   2191篇
  2016年   3214篇
  2015年   4568篇
  2014年   5513篇
  2013年   5990篇
  2012年   6810篇
  2011年   6394篇
  2010年   3733篇
  2009年   3447篇
  2008年   4010篇
  2007年   3584篇
  2006年   3044篇
  2005年   2555篇
  2004年   2119篇
  2003年   1987篇
  2002年   1595篇
  2001年   1467篇
  2000年   1314篇
  1999年   1269篇
  1998年   765篇
  1997年   771篇
  1996年   760篇
  1995年   669篇
  1994年   626篇
  1993年   480篇
  1992年   676篇
  1991年   588篇
  1990年   474篇
  1989年   371篇
  1988年   327篇
  1987年   279篇
  1986年   190篇
  1985年   236篇
  1984年   154篇
  1983年   143篇
  1982年   97篇
  1981年   77篇
  1980年   63篇
  1979年   76篇
  1978年   66篇
  1977年   46篇
  1976年   48篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The coordinated action of many enzymatic activities is required at the DNA replication fork to ensure the error-free, efficient, and simultaneous synthesis of the leading and lagging strands of DNA. In order to define the essential protein-protein interactions and model the regulatory pathways that control Okazaki fragment synthesis, we have reconstituted the replication fork of Escherichia coli in vitro in a rolling circle-type DNA replication system. In this system, in the presence of the single-stranded DNA binding protein, the helicase/primase function on the lagging-strand template is provided by the primosome, and the synthesis of DNA strands is catalyzed by the DNA polymerase III holoenzyme. These reconstituted replication forks synthesize equivalent amounts of leading- and lagging-strand DNA, move at rates comparable to those measured in vivo (600-800 nucleotides/s at 30 degrees C), and can synthesize leading strands in the range of 150-500 kilobases in length. Using this system, we have studied the cycle of Okazaki fragment synthesis at the replication fork. This cycle is likely to have several well defined decision points, steps in the cycle where incorrect execution by the enzymatic machinery will result in an alteration in the product of the reaction, i.e. in the size of the Okazaki fragments. Since identification of these decision points should aid in the determination of which of the enzymes acting at the replication fork control the cycle, we have endeavored to identify those reaction parameters that, when varied, alter the size of the Okazaki fragments synthesized. Here we demonstrate that some enzymes, such as the DnaB helicase, remain associated continuously with the fork while others, such as the primase, must be recruited from solution each time synthesis of an Okazaki fragment is initiated. We also show that variation of the concentration of the ribonucleoside triphosphates and the deoxyribonucleoside triphosphates affects Okazaki fragment size, that the control mechanisms acting at the fork to control Okazaki fragment size are not fixed at the time the fork is assembled but can be varied during the lifetime of the fork, and that alteration in the rate of the leading-strand DNA polymerase cannot account for the effect of the deoxyribonucleoside triphosphates.  相似文献   
942.
Plasmin inhibited the biosynthesis of tissue-type plasminogen activator (tPA) antigen by human umbilical vein endothelial cells (HUVEC) in a dose-dependent manner. The amount of tPA antigen found in the 24-h conditioned medium of cells treated with 100 nM plasmin for 1 h was 20-30% of that in the control group. However, in contrast to tPA, such treatment led to a 3-fold increase in plasminogen activator inhibitor (PAI) activity, whereas the amount of PAI type 1 antigen was unchanged. The effects of plasmin on HUVEC were binding- and catalytic activity-dependent and were specifically blocked by epsilon-aminocaproic acid. Microplasmin, which has no kringle domains, was less effective in reducing tPA antigen biosynthesis or enhancing PAI activity in HUVEC. Kringle domains of plasmin affected neither tPA antigen nor PAI activity of the cells. Other proteases including chymotrypsin, trypsin, and collagenase at comparable concentrations did not have a significant effect on the biosynthesis of tPA antigen or PAI activity of HUVEC. Thrombin stimulated the biosynthesis of tPA and PAI-1 antigens by HUVEC. Thrombin also stimulated an increase in the protein kinase activity in HUVEC, whereas plasmin inhibited the protein kinase activity of the cells. It is possible that plasmin regulates the biosynthesis of tPA in HUVEC through the signal transduction pathway involving protein kinase.  相似文献   
943.
Circular dichroism (CD) and Fourier transform infrared spectroscopic studies have shown that the secondary structure of transforming growth factor alpha (TGF-alpha) is very similar to that of epidermal growth factor (EGF). The infrared spectra revealed a minor difference between the two proteins, in particular in the beta-sheet structure. A large difference was observed with CD between the two proteins in the apparent conformation each adopts when the disulfide bonds are reduced. Reduced TGF-alpha showed a distinct alpha-helical conformation only at a high trifluoroethanol concentration, whereas reduced EGF assumed an alpha-helical conformation in the absence of trifluoroethanol. This indicates that these two proteins adopt different secondary structures in the absence of disulfide bonds, although they assume similar folding structures in their presence. These data suggest that the disulfide bonds to a large degree dictate the conformation of these two proteins. Additionally, differences in the dynamic behavior between EGF and TGF-alpha were also observed. Infrared experiments showed that the hydrogen-deuterium exchange rate is much higher for TGF-alpha than for EGF, indicating that TGF-alpha is a more flexible molecule. The rate of reduction of the disulfide bonds by dithiothreitol was also faster for TGF-alpha. Therefore, it can be concluded that although EGF and TGF-alpha have a similar overall conformation, TGF-alpha is a more flexible molecule than EGF.  相似文献   
944.
Polymerase chain reaction techniques have been used to isolate a cDNA clone containing the entire protein coding region of thromboxane A2 synthase (EC 5.3.99.5) from a human lung cDNA library. The cDNA clone hybridizes with a single 2.1-kilobase mRNA species in phorbol ester-induced human erythroleukemia and monocytic leukemia cell lines. A second cDNA, differing only by an insert of 163 base pairs near the 3'-end of the translated region, was also found to be present in the same library. The proteins predicted from both nucleic acid sequences include the three polypeptide sequences determined from amino acid sequencing of the purified human platelet enzyme, five potential sites for N-glycosylation, and a hydrophobic region that may serve to anchor the synthase in the endoplasmic reticulum membrane. The longer predicted protein, designated thromboxane synthase-I, contains 534 amino acids, with a Mr of 60,684, whereas the shorter protein, designated thromboxane synthase-II, contains 460 amino acids and has a Mr of 52,408. Although thromboxane synthase-II lacks the conserved cysteine that serves as the proximal heme ligand in the other cytochromes, significant sequence similarities exist among thromboxane synthase-I and -II and several P450s, particularly those in family 3. The overall amino acid identity is considerably less than 40%, making it likely that thromboxane synthase represents a previously undefined family of cytochrome P450.  相似文献   
945.
The fast potentiometric indicator di-4-ANEPPS is examined in four different preparations: lipid vesicles, red blood cells, squid giant axon, and guinea pig heart. The dye gives consistent potentiometric responses in each of these systems, although some of the detailed behavior varies. In lipid vesicles, the dye displays an increase in fluorescence combined with a red shift of the excitation spectrum upon hyperpolarization. Similar behavior is found in red cells where a dual wavelength radiometric measurement is also demonstrated. The signal-to-noise ratio of the potentiometric fluorescence response is among the best ever recorded on the voltage-clamped squid axon. The dye is shown to be a faithful and persistent monitor of cardiac action potentials with no appreciable loss of signal or deterioration of cardiac activity for periods as long as 2 hr with intermittent illumination every 10 min. These results, together with previously published applications of the dye to a spherical lipid bilayer model and to cells in culture, demonstrate the versatility of di-4-ANEPPS as a fast indicator of membrane potential.  相似文献   
946.
A comparison of neural network methods and Bayesian statistical methods is presented for prediction of the secondary structure of proteins given their primary sequence. The Bayesian method makes the unphysical assumption that the probability of an amino acid occurring in each position in the protein is independent of the amino acids occurring elsewhere. However, we find the predictive accuracy of the Bayesian method to be only minimally less than the accuracy of the most sophisticated methods used to date. We present the relationship of neural network methods to Bayesian statistical methods and show that, in principle, neural methods offer considerable power, although apparently they are not particularly useful for this problem. In the process, we derive a neural formalism in which the output neurons directly represent the conditional probabilities of structure class. The probabilistic formalism allows introduction of a new objective function, the mutual information, which translates the notion of correlation as a measure of predictive accuracy into a useful training measure. Although a similar accuracy to other approaches (utilizing a mean-square error) is achieved using this new measure, the accuracy on the training set is significantly and tantalizingly higher, even though the number of adjustable parameters remains the same. The mutual information measure predicts a greater fraction of helix and sheet structures correctly than the mean-square error measure, at the expense of coil accuracy, precisely as it was designed to do. By combining the two objective functions, we obtain a marginally improved accuracy of 64.4%, with Matthews coefficients C alpha, C beta and Ccoil of 0.40, 0.32 and 0.42, respectively. However, since all methods to date perform only slightly better than the Bayes algorithm, which entails the drastic assumption of independence of amino acids, one is forced to conclude that little progress has been made on this problem, despite the application of a variety of sophisticated algorithms such as neural networks, and that further advances will require a better understanding of the relevant biophysics.  相似文献   
947.
J Zhao  T Leemann  P Dayer 《Life sciences》1992,51(8):575-581
The nature of the enzyme(s) catalyzing the major metabolic pathway (5'-hydroxylation) of oxicam NSAIDs was investigated in subcellular preparations of human liver tissue. Microsomal, but not cytosolic, fractions catalyzed the 5'-hydroxylation of tenoxicam. This reaction required NADPH and was inhibited by various nonselective P450 inhibitors (CO, SKF-525A, ketoconazole), but not by the peroxidase inhibitor NaN3. Tenoxicam 5'-hydroxylation exhibited simple Michaelis-menten kinetics compatible with catalysis by a single enzyme, but it strongly inhibited its own oxidation at concentrations higher than 100-150 microM. Piroxicam competitively inhibited tenoxicam 5'-hydroxylation and, conversely, tenoxicam competitively inhibited piroxicam 5'-hydroxylation. Tenoxicam 5'-hydroxylation kinetics were similar in microsomes from one poor and five extensive metabolizers of debrisoquin (CYP2D6). Dextromethorphan (CYP2D6 prototype substrate) and midazolam (CYP3A prototype substrate) had no influence on tenoxicam 5'-hydroxylation, whereas mephenytoin, tolbutamide and sulfaphenazole (Ki = 0.1 microM) inhibited it. This indicates that the 5'-hydroxylation of both piroxicam and tenoxicam is predominantly catalyzed by at least one cytochrome P450 isozyme of the CYP2C subfamily.  相似文献   
948.
Summary A short, highly repeated, interspersed DNA sequence from rice was characterized using a combination of techniques and genetically mapped to rice chromosomes by restriction fragment length polymorphism (RFLP) analysis. A consensus sequence (GGC)n, where n varies from 13–16, for the repeated sequence family was deduced from sequence analysis. Southern blot analysis, restriction mapping of repeat element-containing genomic clones, and DNA sequence analysis indicated that the repeated sequence is interspersed in the rice genome, and is heterogeneous and divergent. About 200000 copies are present in the rice genome. Single copy sequences flanking the repeat element were used as RFLP markers to map individual repeat elements. Eleven such repeat elements were mapped to seven different chromosomes. The strategy for characterization of highly dispersed repeated DNA and its uses in genetic mapping, DNA fingerprinting, and evolutionary studies are discussed.  相似文献   
949.
950.
Wedding RT  Dole P  Chardot TP  Wu MX 《Plant physiology》1992,100(3):1366-1368
Phosphoenolpyruvate carboxylase purified from leaves of maize (Zea mays, L.) is sensitive to the presence of urea. Exposure to 2.5 m urea for 30 min completely inactivates the enzyme, whereas for a concentration of 1.5 m urea, about 1 h is required. Malate appears to have no effect on inactivation by urea of phosphoenolpyruvate carboxylase. However, the presence of 20 mm phosphoenolpyruvate or 20 mm glucose-6-phosphate prevents significant inactivation by 1.5 m urea for at least 1 h. The inactivation by urea is reversible by dilution. The inhibition by urea and the protective effects of phosphoenolpyruvate and glucose-6-phosphate are associated with changes in aggregation state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号