To evaluate the effects of dexmedetomidine (Dex) and oxycodone (Oxy) on neurocognitive and inflammatory response after tourniquet-induced ischemia–reperfusion (I/R) injury. C57/BL6 mice were used to construct the mouse model of tourniquet-induced I/R injury. Mice (n?=?48) were randomly divided into sham, I/R, Dex or Oxy group. Morris water maze test was performed to assess the spatial learning and memory function. The expression of NF-κB, TLR4, NR2B, M1 (CD68 and TNF-α) and M2 (CD206 and IL-10) polarization markers in mice hippocampus were detected by western blot or immunofluorescent staining. Spontaneous excitatory post-synaptic currents (sEPSCs) were recorded by electrophysiology. Dex treatment alleviated I/R-induced declines in learning and memory (p < 0.05), while Oxy had no significant effect on it. Compared with I/R group, Dex and Oxy treatment down-regulated the expression of NF-κB, TLR4, TNF-α and CD68 (all p < 0.05), while no significantly different was found in CD206 and IL-10. In addition, Dex treatment down-regulated the expression of NR2B and reduced the frequency and amplitude of sEPSCs in I/R model mice (all p < 0.05), while Oxy had no significant effect on them. Tourniquet-induced I/R could impair the neurocognitive function of mice. Dex treatment could alleviate I/R-induced neurocognitive disorder by inhibiting abnormal synaptic transmission in hippocampal neurons. Both Dex and Oxy could alleviate the inflammatory response likely by inhibiting the polarization of microglia toward M1 phenotype via TLR4/NF-κB pathway. Future studies are needed to further examine the effects of Dex on neurocognitive disorder after tourniquet-induced I/R injury and investigate the exact mechanism.
Neurochemical Research - Postoperative cognitive dysfunction (POCD) remains one of the most common complications following anesthesia and surgery (AS) in the elderly population. Calcium-mediated... 相似文献
Granulocyte colony-stimulating factor (G-CSF) induces stem cells to mobilize to the injury site, which have beneficial effect on tissue repair. The aim of this study was to investigate the effect of G-CSF on the thin endometrium in rat models. In the present study, rats with thin endometrium were divided into 4 groups (experimental group I: administrated with G-CSF (40 µg/kg/d) 4–6 hours post-modeling; control group I: administrated with saline 4–6 hours post-modeling; experimental group II: administrated with G-CSF (40 µg/kg/d) 12 days post-modeling; control group II: administrated with saline 12 days post-modeling. The agentia was given once daily and last for 5 days. Endometrial morphology was analyzed by Hematoxylin-Eosin staining, and the regeneration of endometrial cells was evaluated by immunohistochemistry and western-blot with cytokeratin and vimentin. We found that endometrial thickness and morphology presented a significant difference between experimental groups and control groups. No matter when we start with G-CSF, there was a significantly thicker endometrium and stronger expression of cytokeratin/vimintin in the experimental groups compared with the control groups (P<0.01). There were significant thicker endometrial lining and stronger expression of cytokeratin/vimintin in experimental group I than that of experimental group II (P<0.05), but there was no difference in the endometrial lining and the expression of cytokeratin/vimintin between the two control groups (P>0.05). In conclusion, G-CSF can promote the regeneration of endometrial cells in animal research, especially when the G-CSF was administrated earlier. 相似文献
Phloroglucinol synthase PhlD is a type III polyketide synthase capable of directly converting three molecules of malonyl-CoA to an industrially important chemical—phloroglucinol (1, 3, 5-trihydroxylbenzene). Although this enzymatic process provides an attractive biosynthetic route to phloroglucinol, the low productivity of PhlD limits its further practical application. Here we used protein engineering coupled with in situ product removal to improve the productivity of phoroglucinol biosynthesis in recombinant Escherichia coli. Specifically, directed evolution was used to obtain a series of thermostable PhlD mutants with the best one showing over 24-fold longer half-life of thermal inactivation than the wild-type enzyme at 37 °C. When introduced into a malonyl-CoA overproducing E. coli strain, one of the mutants showed 30 % improvement in phloroglucinol productivity compared to the wild-type enzyme in a shake-flask study and the final phloroglucinol concentration reached 2.35 g/L with 25 % of theoretical yield. A continuous product extraction strategy was designed to remove the toxic phloroglucinol product from the cell media, which further increased the titer of phloroglucinol to 3.65 g/L, which is the highest phloroglucinol titer ever reported to date. 相似文献
Applied Biochemistry and Microbiology - A pyridine-transforming strain P2 was isolated from sewage collected from Guangzhou oil stain field(China).According to the system analysis, it was... 相似文献
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/− mice. Relative to wild-type (WT) controls, Rdh10+/− males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/− females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/− male GM decrease 38% relative to WT. Rdh10+/− male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/− female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity. 相似文献
Colorectal cancer (CRC) is a common disease worldwide that is strongly associated with the gut microbiota. However, little is known regarding the gut microbiota after surgical treatment. 16S rRNA gene sequencing was used to evaluate differences in gut microbiota among colorectal adenoma patients, CRC patients, CRC postoperative patients and healthy controls by comparing gut microbiota diversity, overall composition and taxonomic signature abundance. The gut microbiota of CRC patients, adenoma patients and healthy controls developed in accordance with the adenoma-carcinoma sequence, with impressive shifts in the gut microbiota before or during the development of CRC. The gut microbiota of postoperative patients and CRC patients differed significantly. Subdividing CRC postoperative patients according to the presence or absence of newly developed adenoma which based on the colonoscopy findings revealed that the gut microbiota of newly developed adenoma patients differed significantly from that of clean intestine patients and was more similar to the gut microbiota of carcinoma patients than to the gut microbiota of healthy controls. The alterations of the gut microbiota between the two groups of postoperative patients corresponded to CRC prognosis. More importantly, we used the different gut microbiota as biomarkers to distinguish postoperative patients with or without newly developed adenoma, achieving an AUC value of 0.72. These insights on the changes in the gut microbiota of CRC patients after surgical treatment may allow the use of the microbiota as non-invasive biomarkers for the diagnosis of newly developed adenomas and to help prevent cancer recurrence in postoperative patients. 相似文献
Chronic myeloid leukemia (CML) is a lethal malignancy, and the progress toward long‐term survival has stagnated in recent decades. Pristimerin, a quinone methide triterpenoid isolated from the Celastraceae and Hippocrateaceae families, is well‐known to exert potential anticancer activities. In this study, we investigated the effects and the mechanisms of action on CML. We found that pristimerin inhibited cell proliferation of K562 CML cells by causing G1 phase arrest. Furthermore, we demonstrated that pristimerin triggered autophagy and apoptosis. Intriguingly, pristimerin‐induced cell death was restored by an autophagy inhibitor, suggesting that autophagy is cross‐linked with pristimerin‐induced apoptosis. Further studies revealed that pristimerin could produce excessive reactive oxygen species (ROS), which then induce JNK activation. These findings provide clear evidence that pristimerin might be clinical benefit to patients with CML. 相似文献
High temperature (HT) is becoming an increasingly serious factor in limiting crop production with global climate change. During hot seasons, owing to prevailing HT, cultivated tomatoes are prone to exhibiting stigma exsertion, which hampers pollination and causes fruit set failure. However, the underlying regulatory mechanisms of the HT‐induced stigma exsertion remain largely unknown. Here, we demonstrate that stigma exsertion induced by HT in cultivated tomato is caused by more seriously shortened stamens than pistils, which is different from the stigma exsertion observed in wild tomato species. Under the HT condition, the different responses of pectin, sugar, expansin, and cyclin cause cell wall remodelling and differentially localized cell division and selective cell enlargement, which further determine the lengths of stamens and pistils. In addition, auxin and jasmonate (JA) are implicated in regulating cell division and cell expansion in stamens and pistils, and exogenous JA instead of auxin treatment can effectively rescue tomato stigma exsertion through regulating the JA/COI1 signalling pathway. Our findings provide a better understanding of stigma exsertions under the HT condition in tomato and uncover a new function of JA in improving plant abiotic stress tolerance. 相似文献