首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37961篇
  免费   2814篇
  国内免费   2879篇
  43654篇
  2024年   87篇
  2023年   523篇
  2022年   1283篇
  2021年   2094篇
  2020年   1409篇
  2019年   1834篇
  2018年   1683篇
  2017年   1222篇
  2016年   1743篇
  2015年   2401篇
  2014年   2878篇
  2013年   3100篇
  2012年   3502篇
  2011年   3104篇
  2010年   1805篇
  2009年   1700篇
  2008年   1958篇
  2007年   1720篇
  2006年   1434篇
  2005年   1130篇
  2004年   941篇
  2003年   876篇
  2002年   687篇
  2001年   633篇
  2000年   569篇
  1999年   520篇
  1998年   327篇
  1997年   323篇
  1996年   318篇
  1995年   281篇
  1994年   263篇
  1993年   181篇
  1992年   239篇
  1991年   199篇
  1990年   150篇
  1989年   117篇
  1988年   96篇
  1987年   84篇
  1986年   50篇
  1985年   62篇
  1984年   32篇
  1983年   35篇
  1982年   21篇
  1981年   21篇
  1980年   9篇
  1979年   6篇
  1966年   1篇
  1965年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Apolipoprotein AI (apoAI), the major protein component of HDL, is one of the best predictors of coronary artery disease (CAD), with high apoAI and HDL levels being correlated with low occurrences of CAD. The primary function of apoAI is to recruit phospholipid and cholesterol for assembly of HDL particles. Like other exchangeable apolipoproteins, lipid-free apoAI forms a mixture of different oligomers even at 1.0 mg/mL. This self-association property of the exchangeable apolipoproteins is closely associated with the lipoprotein-binding activity of this protein family. It is unclear if the self-association property of apolipoprotein is required for its lipoprotein-binding activity. We developed a novel method for engineering an oligomeric protein to a monomeric, biologically active protein. Using this method, we generated a monomeric mouse apoAI mutant that is active. This mutant contains the first 216 residues of mouse apoAI and replaces six hydrophobic residues with either polar or smaller hydrophobic residues at the defined positions (V118A/A119S/L121Q/T191S/T195S/T199S). Cross-linking results show that this mutant is greater than 90% monomeric at 8 mg/mL. CD, DSC, and NMR results indicate that the mutant maintains an identical secondary, tertiary structure and stability as those of the wild-type mouse apoAI. Lipid-binding assays suggest that the mutant shares an equal lipoprotein-binding activity as that of the wild-type apoAI. In addition, both the monomeric mutant and the wild-type protein make nearly identical rHDL particles. With this monomeric mouse apoAI, high-quality NMR data has been collected, allowing for the NMR structural determination of lipid-free apoAI. On the basis of these results, we conclude that this apoAI mutant is a monomeric, active apoAI useful for structural determination.  相似文献   
42.
43.
44.
The effect of Haemonchus contortus galectin peptides rHco-gal-m/f to induce apoptosis in the peripheral blood lymphocytes (PBLCs) of goats was investigated. Analysis of apoptosis was carried out with agarose gel electrophoresis, flow cytometry and transmission electron microscopy. The results indicated that there were visible apoptosis bodies and typical DNA ladders by genomic DNA fragmentation. The quantitative analysis of apoptosis by flow cytometry indicated that rHco-gal-m/f peptides induced apoptosis was time and dose dependent. Ultrastructural studies of the PBLCs revealed that a large number of apoptotic cells were present in galectin-treated cells, which had the typical morphologic changes of apoptosis such as reduction of the cytoplasmic volume, loss of cell surface microvilli, chromatin condensation and fragmentation of the apoptotic cells into small apoptotic bodies.  相似文献   
45.
间断低氧对大鼠下丘脑超微结构及前增食欲素水平的影响   总被引:1,自引:0,他引:1  
目的探讨睡眠中间断低氧对大鼠下丘脑前增食欲素及受体水平的影响以及下丘脑超微结构的变化。方法大鼠分成对照组、间断低氧组和持续低氧组,分别给予吸入空气,持续低氧和间断低氧气体,并在实验开始后1d、3d、1w和4w应用RT-PCR方法测定大鼠下丘脑前增食欲素及受体水平,分析其间的变化关系,电镜观察下丘脑的超微结构变化。结果与对照组和持续低氧组比较,间断低氧4w后大鼠下丘脑前增食欲素mRNA水平明显降低,受体水平升高,但在持续低氧和对照组之间无明显差异。在低氧后1d、3d、7d后大鼠下丘脑前增食欲素mRNA降低,受体水平升高,在4w后,持续低氧组则接近正常。急性持续低氧大鼠超微结构变化更严重,而慢性间断低氧变化更持久。结论慢性间断低氧可以引起下丘脑前增食欲素下降及受体水平升高,急性持续低氧也可引起上述变化,而慢性持续低氧未引起增食欲素改变;慢性间断低氧大鼠下丘脑超微结构表现为严重而持久的变化。  相似文献   
46.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   
47.
48.
Marker-assisted gene pyramiding provides a promising way to develop new animal breeds or lines, in which genes responsible for certain favorable characters identified in different breeds or lines are incorporated. In consideration of features of animal populations, we proposed five schemes for pyramiding three genes, denoted Scheme A-E, and five schemes for pyramiding four genes, denoted Scheme F-J. These schemes are representative of the possible alternatives. We also provided an algorithm to compute the population sizes needed in each generation. We compared these schemes with respect to the total population size and the number of generations required under different situations. The results show that there is no scheme that is optimal in all cases. Among the schemes for pyramiding three genes from three lines (L1, L2 and L3), Scheme D (a three-way cross between the three lines are first performed, followed by a backcross to L1 and a subsequent intercross to obtain the desired genotype) has a significant advantage over the other schemes when the recombination rate between adjacent genes ranges from 0.1 to 0.4, while Scheme A (a two-way cross between L1 and L2 and a subsequent intercross are performed, followed by a cross with L3 and a subsequent intercross to obtain the desired genotype) is optimal when recombination rate is 0.5. Among schemes for pyramiding four genes from four lines (L1, L2, L3 and L4), Scheme I (seperately, a two-way cross between L1 and L2 (L3 and L4) followed by a backcross to L1 (L3) and a subsequent intercross are performed, then the offspring from the two sides are crossed and followed by a backcross to L1 and a subsequent intercross to obtain the desired genotype) is optimal when the recombination rate ranges from 0.1 to 0.4, while Scheme F (cross and subsequent intercross between the four lines are performed successively) is the optimal when the recombination rate is 0.5. We also disscuss how the animals' reproductive capacity, the probabilities of obtaining the desired genotypes and genetic distance between adjacent genes would affect the design of an optimal scheme.  相似文献   
49.
Heparan sulfate-modified proteoglycans (HSPGs) are important regulators of signaling and molecular recognition at the cell surface and in the extracellular space. Disruption of HSPG core proteins, HS-synthesis, or HS-degradation can have profound effects on growth, patterning, and cell survival. The Drosophila neuromuscular junction provides a tractable model for understanding the activities of HSPGs at a synapse that displays developmental and activity-dependent plasticity. Muscle cell-specific knockdown of HS biosynthesis disrupted the organization of a specialized postsynaptic membrane, the subsynaptic reticulum (SSR), and affected the number and morphology of mitochondria. We provide evidence that these changes result from a dysregulation of macroautophagy (hereafter referred to as autophagy). Cellular and molecular markers of autophagy are all consistent with an increase in the levels of autophagy in the absence of normal HS-chain biosynthesis and modification. HS production is also required for normal levels of autophagy in the fat body, the central energy storage and nutritional sensing organ in Drosophila. Genetic mosaic analysis indicates that HS-dependent regulation of autophagy occurs non-cell autonomously, consistent with HSPGs influencing this cellular process via signaling in the extracellular space. These findings demonstrate that HS biosynthesis has important regulatory effects on autophagy and that autophagy is critical for normal assembly of postsynaptic membrane specializations.  相似文献   
50.
自行制备一种新型生物素-亲和素偶联探针分子并用于反相蛋白芯片的检测。首先, 将生物素-羊抗鼠IgG与亲和素按照不同比例混合后与鼠IgG蛋白芯片反应, 观察荧光信号的放大情况; 然后以鼠IgG-羊抗鼠IgG体系为研究模式, 对反相蛋白芯片的制备条件进行了考察和优化, 包括荧光分子的非特异性吸附、点样缓冲液的选择以及蛋白的活性等。最后, 采用此偶联探针对反相蛋白芯片进行了检测。结果表明, BSA缓冲液制备的反相蛋白芯片可以防止非特异性吸附, 并有利于保持固定蛋白活性和提高检测限; 另外, 与传统的与生物素-亲和素检测技术相比, 采用生物素-亲和素偶联探针对反相芯片的检测限可以提高4倍左右。表明亲和素-生物素偶联探针成本低、易于合成、并可以与其它的信号放大技术联用进一步提高检测的灵敏度, 有望用于蛋白质芯片的检测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号