首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44379篇
  免费   3720篇
  国内免费   3623篇
  2024年   77篇
  2023年   550篇
  2022年   1490篇
  2021年   2444篇
  2020年   1679篇
  2019年   2215篇
  2018年   2081篇
  2017年   1478篇
  2016年   2077篇
  2015年   2782篇
  2014年   3375篇
  2013年   3579篇
  2012年   4005篇
  2011年   3634篇
  2010年   2129篇
  2009年   1997篇
  2008年   2301篇
  2007年   2017篇
  2006年   1649篇
  2005年   1352篇
  2004年   1214篇
  2003年   1179篇
  2002年   970篇
  2001年   854篇
  2000年   737篇
  1999年   662篇
  1998年   413篇
  1997年   363篇
  1996年   367篇
  1995年   301篇
  1994年   293篇
  1993年   207篇
  1992年   257篇
  1991年   242篇
  1990年   175篇
  1989年   130篇
  1988年   107篇
  1987年   94篇
  1986年   54篇
  1985年   67篇
  1984年   29篇
  1983年   36篇
  1982年   21篇
  1981年   22篇
  1980年   9篇
  1979年   6篇
  1965年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Liu  Rui-zhu  Li  Tao  Zhao  Guo-qing 《Neurochemical research》2019,44(5):1090-1100
Neurochemical Research - Inhalation anesthetic isoflurane may cause an increased risk of cognitive impairment. Previous studies have indicated that this cognitive decline is associated with...  相似文献   
12.
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.  相似文献   
13.
In total, 366 birds representing 55 species in 24 families and eight orders, were examined for chewing lice (Phthiraptera: Amblycera, Ischnocera) in two high‐altitude localities in Yunnan Province, China. In Ailaoshan, almost all of the birds examined were resident passeriforms, of which 36% were parasitized by chewing lice. In Jinshanyakou, most birds were on migration, and included both passerine and non‐passerine birds. Of the passerine birds caught in Jinshanyakou, only one bird (0.7%) was parasitized by chewing lice. The prevalence of Myrsidea and Brueelia‐complex lice on birds caught in Ailaoshan was higher than in previous reports. Of the chewing lice identifiable to species level, three represent new records for China: Actornithophilus hoplopteri (Mjöberg, 1910), Maculinirmus ljosalfar Gustafsson & Bush, 2017 and Quadraceps sinensis Timmermann, 1954. In total, 17 new host records are included, of which we describe two as new species in the Brueelia‐complex: Guimaraesiella (Cicchinella) ailaoshanensis sp. nov. ex Schoeniparus dubius dubius (Hume, 1874) and G. (C.) montisodalis sp. nov. ex Fulvetta manipurensis tonkinensis Delacour & Jabouille, 1930. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:9FC3D8EE‐2CED‐4DBE‐A1DB‐471B71260D27 .  相似文献   
14.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
15.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
16.
Epigallocatechin gallate (EGCG), a main active ingredient of green tea, is believed to be beneficial in association with anticarcinogenesis, antiobesity, and blood pressure reduction. Here we report that EGCG extended Caenorhabditis elegans longevity under stress. Under heat stress (35°C), EGCG improved the mean longevity by 13.1% at 0.1 μg/ml, 8.0% at 1.0 μg/ml, and 11.8% at 10.0 μg/ml. Under oxidative stress, EGCG could improve the mean longevity of C. elegans by 172.9% at 0.1 μg/ml, 177.7% at 1.0 μg/ml, and 88.5% at 10.0 μg/ml. However, EGCG could not extend the life span of C. elegans under normal culture conditions. Further studies demonstrated that the significant longevity-extending effects of EGCG on C. elegans could be attributed to its in vitro and in vivo free radical-scavenging effects and its up-regulating effects on stress-resistance-related proteins, including superoxide dismutase-3 (SOD-3) and heat shock protein-16.2 (HSP-16.2), in transgenic C. elegans with SOD-3∷green fluorescent protein (GFP) and HSP-16.2∷GFP expression. Quantitative real-time PCR results showed that the up-regulation of aging-associated genes such as daf-16, sod-3, and skn-1 could also contribute to the stress resistance attributed to EGCG. As the death rate of a population is closely related to the mortality caused by external stress, it could be concluded that the survival-enhancing effects of EGCG on C. elegans under stress are very important for antiaging research.  相似文献   
17.
18.
19.
Signaling through the T cell antigen receptor (TCR) is important for the homeostasis of naïve and memory CD4+ T cells. The significance of TCR signaling in regulatory T (Treg) cells has not been systematically addressed. Using an Ox40-cre allele that is prominently expressed in Treg cells, and a conditional null allele of the gene encoding p56Lck, we have examined the importance of TCR signaling in Treg cells. Inactivation of p56Lck resulted in abnormal Treg homeostasis characterized by impaired turnover, preferential redistribution to the lymph nodes, loss of suppressive function, and striking changes in gene expression. Abnormal Treg cell homeostasis and function did not reflect the involvement of p56Lck in CD4 function because these effects were not observed when CD4 expression was inactivated by Ox40-cre.The results make clear multiple aspects of Treg cell homeostasis and phenotype that are dependent on a sustained capacity to signal through the TCR.  相似文献   
20.
皮肤作为人体最大器官覆盖于全身,能阻挡有害物质的侵入,保护人体内环境稳态,参与人体代谢过程。皮肤损伤、炎症和纤维化等,都会导致皮肤屏障功能的减退,影响正常的生命活动。溶血磷脂酸(lysophosphatidic acid,LPA)是十分活跃的磷脂信号分子,参与多种生理和病理生理过程。LPA是维持体内平衡所必需的生物活性脂质介质,在皮肤中通过不同的信号通路发挥多功能磷脂信使作用。本文综述了皮肤中溶血磷脂酸受体(lysophosphatidic acid receptor,LPA1-6)及其细胞信号通路的作用及机制,综述了LPA在皮肤创面愈合、皮肤瘢痕、皮肤黑色素瘤、硬皮病、皮肤瘙痒、过敏性皮炎、皮肤屏障、皮肤疼痛,皮肤毛发生长中的作用及分子机制,有助于了解LPA在皮肤中的生理和病理生理作用。深入研究LPA的作用机制将有助于挖掘其在皮肤治疗中的作用,开发以LPA为靶点的药物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号