首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2653篇
  免费   89篇
  国内免费   7篇
  2021年   28篇
  2018年   58篇
  2017年   41篇
  2016年   50篇
  2015年   70篇
  2014年   63篇
  2013年   127篇
  2012年   106篇
  2011年   114篇
  2010年   82篇
  2009年   69篇
  2008年   79篇
  2007年   99篇
  2006年   74篇
  2005年   95篇
  2004年   84篇
  2003年   73篇
  2002年   82篇
  2001年   48篇
  2000年   52篇
  1999年   39篇
  1998年   27篇
  1997年   28篇
  1996年   30篇
  1995年   22篇
  1994年   32篇
  1993年   29篇
  1992年   40篇
  1991年   48篇
  1990年   36篇
  1989年   36篇
  1988年   52篇
  1987年   43篇
  1986年   53篇
  1985年   44篇
  1984年   40篇
  1983年   30篇
  1982年   27篇
  1981年   31篇
  1979年   32篇
  1978年   34篇
  1977年   37篇
  1976年   32篇
  1975年   34篇
  1974年   31篇
  1973年   28篇
  1972年   30篇
  1971年   26篇
  1970年   21篇
  1969年   22篇
排序方式: 共有2749条查询结果,搜索用时 15 毫秒
261.
The effects of 5-hydroxytryptamine (5-HT; serotonin) and dopamine (DA) on tissue carbohydrate metabolism and haemolymph glucose levels in the freshwater prawn, Macrobrachium malcolmsonii, were investigated. Injection of 5-HT and DA produced hyperglycaemia in a dose-dependent and time-dependent manner, with DA being more effective than 5-HT. Interestingly, 5-HT and DA induced hyperglycaemia only in intact prawns but not in bilaterally eyestalk-ablated individuals. Total carbohydrate (TCHO) and glycogen levels decreased and phosphorylase activity increased in the hepatopancreas and muscle of intact prawns after being injected with 5-HT or DA. However, bilateral eyestalk ablation decreased haemolymph glucose and tissue phosphorylase activity and increased TCHO and glycogen levels of the hepatopancreas and muscle. Injection of 5-HT or DA did not cause significant changes in these variables in eyestalk-ablated prawns. It is hypothesized that 5-HT and DA induce hyperglycaemia in prawns by stimulating the release of crustacean hyperglycaemic hormone (CHH) from the X-organ sinus gland (XO-SG) complex located in the eyestalk.  相似文献   
262.
263.
Investigation of factors that modulate amyloid formation of proteins is important to understand and mitigate amyloid-related diseases. To understand the role of electrostatic interactions and the effect of ionic cosolutes, especially anions, on amyloid formation, we have investigated the effect of salts such as NaCl, NaI, NaClO(4), and Na(2)SO(4) on the amyloid fibril growth of beta(2)-microglobulin, the protein involved in dialysis-related amyloidosis. Under acidic conditions, these salts exhibit characteristic optimal concentrations where the fibril growth is favored. The presence of salts leads to an increase in hydrophobicity of the protein as reported by 8-anilinonaphthalene-1-sulfonic acid, indicating that the anion interaction leads to the necessary electrostatic and hydrophobic balance critical for amyloid formation. However, high concentrations of salts tilt the balance to high hydrophobicity, leading to partitioning of the protein to amorphous aggregates. Such amorphous aggregates are not competent for fibril growth. The order of anions based on the lowest concentration at which fibril formation is favored is SO(4)(2)(-) > ClO(4)(-) > I(-) > Cl(-), consistent with the order of their electroselectivity series, suggesting that preferential anion binding, rather than general ionic strength effect, plays an important role in the amyloid fibril growth. Anion binding is also found to stabilize the amyloid fibrils under acidic condition. Interestingly, sulfate promotes amyloid growth of beta(2)-microglobulin at pH between 5 and 6, closer to its isoelectric point. Considering the earlier studies on the role of glycosaminoglycans and proteoglycans (i.e., sulfated polyanions) on amyloid formation, our study suggests that preferential interaction of sulfate ions with amyloidogenic proteins may have biological significance.  相似文献   
264.
In non-irrigated agricultural fields in tropical zones, high temperature and water stress prevail during the main cropping season. Natural epizootics of Beauveria bassiana on lepidopteran pests occur during winter. Application of B. bassiana during hot months when pest populations are at their climax may prove an effective management strategy. Therefore, 29 isolates of B. bassiana were tested for their ability to germinate and grow in temperature and water availability conditions prevailing during the pest season in these fields. The effect of temperature cycles with 8 h duration of high temperature fluctuating with 16 h duration of lower temperature (similar to field conditions); low water availability; and a combination of these two stress conditions was studied. Germination and growth assays were done at fluctuating temperature cycles of 32, 35, 38, and 42+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and in media with water stress created by 10, 20, 30, and 40% polyethylene glycol (PEG 6000). Assays set at a continuous temperature of 25+/-1 degrees C with no PEG in the medium served as controls. Stress was assessed as percentage germination or as growth relative to control. Isolates showing 90% growth relative to the control at temperature cycles including high temperatures of 35 and 38+/-1 degrees C were identified. One isolate (ARSEF 2860) had a thermal threshold above 43 degrees C. At 25 degrees C, all but one isolate of B. bassiana showed >90% growth relative to the control in 10% PEG (-0.45 MPa). Some isolates were found with >90% growth relative to control in medium having 30% PEG with water availability (1.33 MPa), nearly equivalent to that in soils which induce permanent wilting point of plants. When isolates that showed >90% growth relative to the control at both stress conditions, were stressed simultaneously, a decrease in growth was observed. Growth was reduced by approximately 20% at 35+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG and was affected to a greater degree in combinations of harsher stress conditions. The isolate ARSEF 2860 with a thermal threshold of >43 degrees C showed approximately 80% relative growth at a combined stress of 38+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG. These findings will aid the selection of isolates for use in field trials in hot or dry agricultural climates.  相似文献   
265.
266.
In tomato soilless culture, slow filtration allows one to control the development of diseases caused by pathogenic microorganisms. During the disinfecting process, microbial elimination is ensured by mechanical and biological factors. In this study, system efficacy was enhanced further to a biological activation of filter by inoculating the pozzolana grains contained in the filtering unit with 5 selected bacteria. Three strains identified as Pseudomonas putida and 2 as Bacillus cereus came from a filter whose high efficiency to eliminate pathogens has been proven over years. These 5 bacteria displayed either a plant growth promoting activity (P. putida strains) or antagonistic properties (B. cereus strains). Over the first months following their introduction in the filter, the bacterial colonisation of pozzolana grains was particularly high as compared to the one observed in the control filter. Conversely to Bacillus spp. populations, Pseudomonas spp. ones remained abundant throughout the whole cultural season. The biological activation of filter unit very significantly enhanced fungal elimination with respect to the one displayed by the control filter. Indeed, the 6-month period needed by the control filter to reach its best efficacy against Fusarium oxysporum was shortened for the bacteria-amended filter; in addition, a high efficacy filtration was got as soon as the first month. Fast colonization of pozzolana grains by selected bacteria and their subsequent interaction with F. oxysporum are likely responsible for filter efficiency. Our results suggest that Pseudomonas spp. act by competition for nutrients, and Bacillus spp. by antibiosis and (or) direct parasitism. Elimination of other fungal pathogens, i.e., Pythium spp., seems to differ from that of Fusarium since both filters demonstrated a high efficacy at the experiment start. Pythium spp. elimination appears to mainly rely on physical factors. It is worth noting that a certain percentage of the 5 pozzolana-inoculated bacteria failed to colonise the filter unit and were, thus, driven to the plants by the nutrient solution. Their contribution to the establishment of a beneficial microbial community in the rhizosphere is discussed.  相似文献   
267.
In triosephosphate isomerase, Cys126 is a conserved residue located close to the catalytic glutamate, Glu165. Although it has been mentioned that Cys126 and other nearby residues are required to maintain the active site geometry optimal for catalysis, no evidence supporting this idea has been reported to date. In this work, we studied the catalytic and stability properties of mutants C126A and C126S of Saccharomyces cerevisiae TIM (wtTIM). None of these amino acid replacements induced significant changes in the folding of wtTIM, as indicated by spectroscopic studies. C126S and C126A have K(M) and k(cat) values that are concomitantly reduced by only 4-fold and 1.5-fold, respectively, compared to those of wtTIM; in either case, however, the catalytic efficiency (k(cat)/K(M)) of the enzyme is barely affected. The affinity of mutated TIMs for the competitive inhibitor 2-phosphoglycolate augmented also slightly. In contrast, greater susceptibility to thermal denaturation resulted from mutation of Cys126, especially when it was changed to Ser. By using values of the rate constants for unfolding and refolding, we estimated that, at 25 degrees C, C126A and C126S are less stable than wtTIM by about 5.0 and 9.0 kcal mol(-)(1), respectively. Moreover, either of these mutations slows down the folding rate by a factor of 10 and decreases the recovery of the active enzyme after thermal unfolding. Thus, Cys126 is required for proper stability and efficient folding of TIM rather than for enzymatic catalysis.  相似文献   
268.
Hsp33, an Escherichia coli cytosolic chaperone, is inactive under normal conditions but becomes active upon oxidative stress. It was previously shown to dimerize upon activation in a concentration- and temperature-dependent manner. This dimer was thought to bind to aggregation-prone target proteins, preventing their aggregation. In the present study, we report small angle x-ray scattering (SAXS), steady state and time-resolved fluorescence, gel filtration, and glutaraldehyde cross-linking analysis of full-length Hsp33. Our circular dichroism and fluorescence results show that there are significant structural changes in oxidized Hsp33 at different temperatures. SAXS, gel filtration, and glutaraldehyde cross-linking results indicate, in addition to the dimers, the presence of oligomeric species. Oxidation in the presence of physiological salt concentration leads to significant increases in the oligomer population. Our results further show that under conditions that mimic the crowded milieu of the cytosol, oxidized Hsp33 exists predominantly as an oligomeric species. Interestingly, chaperone activity studies show that the oligomeric species is much more efficient compared with the dimers in preventing aggregation of target proteins. Taken together, these results indicate that in the cell, Hsp33 undergoes conformational and quaternary structural changes leading to the formation of oligomeric species in response to oxidative stress. Oligomeric Hsp33 thus might be physiologically relevant under oxidative stress.  相似文献   
269.
The local destination transfer of prostaglandin E2 (PGE2) from the uterine lymph to arterial blood supplying the ovary and its retrograde transfer to arterial blood supplying the uterine horn and the effect of additional delivery of PGE2 into the ovary on the secretion of steroid hormones was studied in early pregnant gilts. The injection of PGE2 under the perimetrium caused an increase (P<0.001) in PGE2 concentration in both uterine venous effluent and ovarian and uterine arterial blood. The infusion of PGE2 into the ovarian artery increased the concentration of progesterone in ovarian venous blood on day 13 of pregnancy during (P<0.05) and after (P<0.001) infusion, and on day 14 of pregnancy after infusion (P<0.01). In conclusion, local destination transfer of PGE2 from uterine lymph and venous blood to the ovary may affect luteal function, and retrograde transfer of PGE2 to the arterial blood supplying the uterus may contribute to the prevention of regressive changes of the endometrium in early pregnant gilts.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号