首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92498篇
  免费   6730篇
  国内免费   6400篇
  105628篇
  2024年   201篇
  2023年   1254篇
  2022年   2940篇
  2021年   4868篇
  2020年   3193篇
  2019年   4017篇
  2018年   3956篇
  2017年   2866篇
  2016年   4051篇
  2015年   5841篇
  2014年   6887篇
  2013年   7247篇
  2012年   8494篇
  2011年   7737篇
  2010年   4484篇
  2009年   4187篇
  2008年   4775篇
  2007年   4146篇
  2006年   3533篇
  2005年   2821篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
982.
:     
  相似文献   
983.
Zhang XJ  Xu MY  Lv N 《生理学报》2005,57(1):66-70
本文研究了谷氨酸(glutamic acid,Glu)及其NMDA受体拮抗剂5-甲基二氢丙环庚烯亚胺马来酸(MK-801)对人鼠伏核(nucleus accumbens,NAc)痛兴奋神经元(pain-excitation neurons,PEN)痛诱发反应的影响。电刺激坐骨神经作为伤害性刺激,用玻璃微电极记录NAc的PEN放电,观察脑室内注射Glu和NAc内注射MK-801对大鼠NAc中PEN伤害性诱发活动的影响。结果显示,伤害性刺激可使NAc的PEN电活动增强;脑室内注射Glu(10nmol/10μl)可使NAc的PEN伤害性诱发放电频率增加;NAc内注射MK-801(1.0nmol/0.5μl)可阻断这种作用;MK-801本身也可部分抑制PEN伤害性诱发反应。上述结果表明,Glu对PEN伤害性反应的易化作用是通过NMDA受体介导的:Glu和NMDA受体参与NAc伤害性信息传递的调制。  相似文献   
984.
Z. Wang  J. Shen  F. Zhang 《Plant and Soil》2006,287(1-2):247-256
The study examined the interactive effect of pH and P supply on cluster-root formation, carboxylate exudation and proton release by an alkaline-tolerant lupin species (Lupinus pilosus Murr.) in nutrient solution. The plants were exposed to 1 (P1, deficient) and 50 μM P (P50, adequate) for 34 days in nutrient solution at either pH 5.6 or 7.8. Plant biomass was not influenced by pH at P1, but at P50 shoot and root dry weights were 23 and 18% higher, respectively, at pH 7.8 than at pH 5.6. There was no significant difference in plant biomass between two P treatments regardless of medium pH. Phosphorus deficiency increased significantly the number of the second-order lateral roots compared with the P50 treatment. Both total root length and specific root length of plants grown at pH 5.6 were higher than those at pH 7.8 regardless of P supply. Cluster roots were formed at P1, but cluster-root number was 2-fold higher at pH 7.8 than pH 5.6. Roots released 16 and 31% more protons at pH 5.6 and 7.8, respectively, in P1 than in P50 treatments, and the rate of proton release followed the similar pattern. At pH 5.6, citrate exudation rate was 0.39 μmol g−1 root DW h−1 at P1, but was under the detection limit at P50; at pH 7.8, it was 2.4-fold higher in P1 than in P50 plants. High pH significantly increased citrate exudation rate in comparison to pH 5.6. The uptake of anions P and S was inhibited at P1 and high pH increased cations Na, Mg and Ca uptake. The results suggested that enhanced cluster-root formation, proton release and citrate exudation may account for the mechanism of efficient P acquisition by alkaline-tolerant L. pilosus well adapted to calcareous soils. Cluster-root formation and citrate exudation in L. pilosus can be altered by medium pH and P deficiency. Phosphorus deficiency-induced proton release may be associated with the reduced anion uptake, but high pH-induced proton release may be partly attributed to increased cation uptake.  相似文献   
985.
Oryza officinalis (CC, 2n=24) and Oryza rhizomatis (CC, 2n=24) belong to the Oryza genus, which contains more than 20 identified wild rice species. Although much has been known about the molecular composition and organization of centromeres in Oryza sativa, relatively little is known of its wild relatives. In the present study, we isolated and characterized a 126-bp centromeric satellite (CentO-C) from three bacterial artificial chromosomes of O. officinalis. In addition to CentO-C, low abundance of CentO satellites is also present in O. officinalis. In order to determine the chromosomal locations and distributions of CentO-C (126-bp), CentO (155 bp) and TrsC (366 bp) satellite within O. officinalis, fluorescence in situ hybridization examination was done on pachytene or metaphase I chromosomes. We found that only ten centromeres (excluding centromere 7 and 2) contain CentO-C arrays in O. officinalis, while centromere 7 comprises CentO satellites, and centromere 2 is devoid of any detectable satellites. For TrsC satellites, it was detected at multiple subtelomeric regions in O. officinalis, however, in O. rhizomatis, TrsC sequences were detected both in the four centromeric regions (CEN 3, 4, 10, 11) and the multiple subtelomeric regions. Therefore, these data reveal the evolutionary diversification pattern of centromere DNA within/or between close related species, and could provide an insight into the dynamic evolutionary processes of rice centromere.  相似文献   
986.
Zhang ZS  Lu YG  Liu XD  Feng JH  Zhang GQ 《Genetica》2006,127(1-3):295-302
Pollen abortion is one of the major reasons causing the inter-subspecific F1 hybrid sterility in rice and is due to allelic interaction of F1 pollen sterility genes. The microsporogenesis and microgametogenesis of Taichung 65 and its three F1 hybrids were comparatively studied by using techniques of differential interference contrast microscopy, semi-thin section light microscopy, epifluorescence microscopy and TEM. The results showed that there were differences among the cytological mechanisms of pollen abortion due to allelic interaction at the three F1 pollen sterility loci. The allelic interaction at S-a locus resulted in microspores unable to extend the protoplasm membrane with the enlargement of the microspore at the middle microspore stage and finally producing empty abortive pollen. The allelic interaction at S-b locus caused asynchronous development of microspores at the middle microspore stage producing stainable abortive pollen. The allelic interaction at S-c locus mainly led to the non-dissolution of the generative cell wall and finally caused the hybrid F1 mainly producing stainable abortive pollen. Genotypic identification indicated that the abortive pollen were those with S j allele.  相似文献   
987.
Surfactant protein D (SP-D) is a member of the collectin family of innate defense proteins. Members of this family share four distinct structural domains: an N-terminal cross-linking domain, a collagenous domain, a neck region, and a carbohydrate recognition domain. In this study, the function of the collagenous domain was evaluated by expressing a SP-D collagen deletion mutant protein (rSftpdCDM) in wild type and SP-D null mice (Sftpd(-/-)). rSftpdCDM formed disulfide-linked trimers that further oligomerized into higher order structures. The mutant protein effectively bound carbohydrate and aggregated bacteria in vitro. Whereas rSftpdCDM did not disrupt pulmonary morphology or surfactant phospholipid levels in wild type mice, the mutant protein failed to rescue the emphysema or enlarged foamy macrophages that are characteristic of Sftpd(-/-) mice. Moreover, rSftpdCDM partitioned with small aggregate surfactant in a manner similar to SP-D, but rSftpdCDM did not correct the abnormal surfactant ultrastructure or phospholipid levels observed in Sftpd(-/-) mice. In contrast, rSftpdCDM completely corrected viral clearance and the abnormal inflammatory response that occurs following pulmonary influenza A challenge in Sftpd(-/-) mice. Our findings indicate that the collagen domain of SP-D is not required for assembly of disulfide-stabilized oligomers or the innate immune response to viral pathogens. The collagen domain of SP-D is required for the regulation of pulmonary macrophage activation, airspace remodeling, and surfactant lipid homeostasis.  相似文献   
988.
We employed culture-dependent and -independent techniques to study microbial diversity in Lake Chaka, a unique hypersaline lake (32.5% salinity) in northwest China. It is situated at 3,214 m above sea level in a dry climate. The average water depth is 2 to 3 cm. Halophilic isolates were obtained from the lake water, and halotolerant isolates were obtained from the shallow sediment. The isolates exhibited resistance to UV and gamma radiation. Microbial abundance in the sediments ranged from 10(8) cells/g at the water-sediment interface to 10(7) cells/g at a sediment depth of 42 cm. A major change in the bacterial community composition was observed across the interface. In the lake water, clone sequences affiliated with the Bacteroidetes were the most abundant, whereas in the sediments, sequences related to low G+C gram-positive bacteria were predominant. A similar change was also present in the archaeal community. While all archaeal clone sequences in the lake water belonged to the Halobacteriales, the majority of the sequences in the sediments were related to those previously obtained from methanogenic soils and sediments. The observed changes in the microbial community structure across the water-sediment interface were correlated with a decrease in salinity from the lake water (32.5%) to the sediments (approximately 4%). Across the interface, the redox state also changed from oxic to anoxic and may also have contributed to the observed shift in the microbial community.  相似文献   
989.
Zhang G  Sanfaçon H 《Journal of virology》2006,80(21):10847-10857
Replication of nepoviruses (family Comoviridae) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleoside triphosphate-binding protein (NTB) of Tomato ringspot nepovirus is an integral membrane protein with two ER-targeting sequences and have suggested that it anchors the viral replication complex (VRC) to the membranes. A second highly hydrophobic protein domain (X2) is located immediately upstream of the NTB domain in the RNA1-encoded polyprotein. X2 shares conserved sequence motifs with the comovirus 32-kDa protein, an ER-targeted protein implicated in VRC assembly. In this study, we examined the ability of X2 to associate with intracellular membranes. The X2 protein was fused to the green fluorescent protein and expressed in Nicotiana benthamiana by agroinfiltration. Confocal microscopy and membrane flotation experiments suggested that X2 is targeted to ER membranes. Mutagenesis studies revealed that X2 contains multiple ER-targeting domains, including two C-terminal transmembrane helices and a less-well-defined domain further upstream. To investigate the topology of the protein in the membrane, in vitro glycosylation assays were conducted using X2 derivatives that contained N-glycosylation sites introduced at the N or C termini of the protein. The results led us to propose a topological model for X2 in which the protein traverses the membrane three times, with the N terminus oriented in the lumen and the C terminus exposed to the cytoplasmic face. Taken together, our results indicate that X2 is an ER-targeted polytopic membrane protein and raises the possibility that it acts as a second membrane anchor for the VRC.  相似文献   
990.
Clinical imaging methods are highly effective in the diagnosis of vascular pathologies, but they do not currently provide enough detail to shed light on the cause or progression of such diseases, and would be hard pressed to foresee the outcome of surgical interventions. Greater detail of and prediction capabilities for vascular hemodynamics and arterial mechanics are obtained here through the coupling of clinical imaging methods with computational techniques. Three-dimensional, patient-specific geometric reconstructions of the pediatric proximal pulmonary vasculature were obtained from x-ray angiogram images and meshed for use with commercial computational software. Two such models from hypertensive patients, one with multiple septal defects, the other who underwent vascular reactivity testing, were each completed with two sets of suitable fluid and structural initial and boundary conditions and used to obtain detailed transient simulations of artery wall motion and hemodynamics in both clinically measured and predicted configurations. The simulation of septal defect closure, in which input flow and proximal vascular stiffness were decreased, exhibited substantial decreases in proximal velocity, wall shear stress (WSS), and pressure in the post-op state. The simulation of vascular reactivity, in which distal vascular resistance and proximal vascular stiffness were decreased, displayed negligible changes in velocity and WSS but a significant drop in proximal pressure in the reactive state. This new patient-specific technique provides much greater detail regarding the function of the pulmonary circuit than can be obtained with current medical imaging methods alone, and holds promise for enabling surgical planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号