首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127571篇
  免费   10209篇
  国内免费   12062篇
  2024年   224篇
  2023年   1549篇
  2022年   3062篇
  2021年   6500篇
  2020年   4528篇
  2019年   5666篇
  2018年   5457篇
  2017年   4065篇
  2016年   5614篇
  2015年   8091篇
  2014年   9614篇
  2013年   10108篇
  2012年   12003篇
  2011年   11076篇
  2010年   6698篇
  2009年   6217篇
  2008年   7012篇
  2007年   6187篇
  2006年   5415篇
  2005年   4317篇
  2004年   3597篇
  2003年   3342篇
  2002年   2771篇
  2001年   2201篇
  2000年   1950篇
  1999年   1968篇
  1998年   1206篇
  1997年   1220篇
  1996年   1107篇
  1995年   1014篇
  1994年   887篇
  1993年   719篇
  1992年   871篇
  1991年   678篇
  1990年   573篇
  1989年   446篇
  1988年   372篇
  1987年   278篇
  1986年   248篇
  1985年   290篇
  1984年   163篇
  1983年   152篇
  1982年   99篇
  1981年   57篇
  1980年   38篇
  1979年   49篇
  1978年   19篇
  1977年   14篇
  1975年   16篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
121.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
122.
  相似文献   
123.
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30~35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01?±?0.15 log CFU/g and spores of Bacillus of about 10.30?±?0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P?<?0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P?<?0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.  相似文献   
124.
125.
126.
To determine the photosynthetic characteristics of C3 plants and their sensitivity to CO2 at different altitudes on the Tibetan Plateau, hulless barley (Hordeum vulgare L. ssp. vulgare) was grown at altitudes of 4,333 m and 3,688 m. Using gas-exchange measurements, photosynthetic parameters were simulated, including the maximum net photosynthesis (P max) and the apparent quantum efficiency (α). Plants growing at higher altitude had higher net photosynthetic rates (P N), photosynthesis parameters (P max and α) and sensitivities to CO2 enhancement than plants growing at lower altitude on the Tibetan Plateau. The enhancements of P N, P max, and α for plants growing at higher altitude, corresponding with 10 μmol(CO2) mol−1 increments, were approximately 0.20∼0.45%, 0.05∼0.20% and 0.12∼0.36% greater, respectively, than for plants growing at lower altitude, respectively, where CO2 levels rose from 10 to 170 μmol(CO2) mol−1. Therefore, on the Tibetan Plateau, the changes in the photosynthetic capacities and the photosynthetic sensitivities to CO2 observed in the C3 plants grown above 3,688 m are likely to increase with altitude despite the decreasing CO2 partial pressure.  相似文献   
127.
Embryos of most fish develop externally and are exposed to an aquatic environment full of potential pathogens, whereas they have little or only limited ability to mount an efficient and protective response. How fish embryos survive pathogenic attacks remains poorly defined. Here we demonstrate that the maternal immunization of female zebrafish with formalin-killed Aeromonas hydrophila causes a significant increase in C3 and Bf contents in the mother, a corresponding rise in the offspring, and induces a remarkable increase in the hemolytic activities in both the mother and offspring. In addition, the embryos derived from the immunized mother are significantly more tolerant to A. hydrophila challenge than those from the unimmunized fish, and blocking C3 and Bf activities by injection of the antibodies against C3 and Bf into the embryos render them more susceptible to A. hydrophila. These results clearly show that the protection of zebrafish embryos against A. hydrophila can be achieved by the maternally-transferred immunity of the complement system operating via the alternative pathway. This appears to be the first report providing in vivo evidences for the protective role of the alternative complement components in the early embryos of zebrafish, paving the way for insights into the in vivo function of other maternally-transferred factors in fish.  相似文献   
128.
129.
Spines or trichomes on the fruit of cucumbers enhance their commercial value in China. In addition, glabrous mutants exhibit resistance to aphids and therefore their use by growers can reduce pesticide residues. Previous studies have reported two glabrous mutant plants containing the genes, csgl1 and csgl2. In the present study, a new glabrous mutant, NCG157, was identified showing a gene interaction effect with csgl1 and csgl2. This mutant showed the glabrous character on stems, leaves, tendrils, receptacles and ovaries, and there were no spines or tumors on the fruit surface. Inheritance analysis showed that a single recessive gene, named csgl3, determined the glabrous trait. An F2 population derived from the cross of two inbred lines 9930 (a fresh market type from Northern China that exhibits trichomes) and NCG157 (an American processing type with glabrous surfaces) was used for genetic mapping of the csgl3 gene. By combining bulked segregant analysis (BAS) with molecular markers, 18 markers, including two simple sequence repeats (SSR), nine insertion deletions (InDel) and seven derived cleaved amplified polymorphism sequences (dCAPs), were identified to link to the csgl3 gene. All of the linked markers were used as anchor loci to locate the csgl3 gene on cucumber chromosome 6. The csgl3 gene was mapped between the dCAPs markers dCAPs-21 and dCAPs-19, at genetic distances of 0.05 cM and 0.15 cM, respectively. The physical distance of this region was 19.6 kb. Three markers, InDel-19, dCAPs-2 and dCAPs-11, co-segregated with csgl3. There were two candidate genes in the region, Csa6M514860 and Csa6M514870. Quantitative real-time PCR showed that the expression of Csa6M514870 was higher in the tissues of 9930 than that of NCG157, and this was consistent with their phenotypic characters. Csa6M514870 is therefore postulated to be the candidate gene for the development of trichomes in cucumber. This study will facilitate marker-assisted selection (MAS) of the smooth plant trait in cucumber breeding and provide for future cloning of csgl3.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号