首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1796篇
  免费   136篇
  国内免费   202篇
  2024年   1篇
  2023年   22篇
  2022年   51篇
  2021年   94篇
  2020年   68篇
  2019年   95篇
  2018年   84篇
  2017年   61篇
  2016年   89篇
  2015年   114篇
  2014年   130篇
  2013年   143篇
  2012年   152篇
  2011年   134篇
  2010年   86篇
  2009年   84篇
  2008年   102篇
  2007年   77篇
  2006年   82篇
  2005年   68篇
  2004年   63篇
  2003年   45篇
  2002年   42篇
  2001年   37篇
  2000年   35篇
  1999年   35篇
  1998年   17篇
  1997年   13篇
  1996年   15篇
  1995年   15篇
  1994年   10篇
  1993年   9篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2134条查询结果,搜索用时 513 毫秒
91.
Kazakh sheep are seasonal estrous animals, and gonadotropin-releasing hormone (GnRH) is the key to fertility regulation. The nutritional level has a certain regulatory effect on estrous, and vitamin B folate plays a role in DNA methylation, directly participating in the process. The goal of this study was to determine whether folate is involved in GnAQ methylation and its effect on GnRH secretion. The hypothalamic neurons of Kazakh fetal sheep were treated with folate at concentrations of 0 mg/mL, 4 mg/mL, 40 mg/mL, and 80 mg/mL. GnAQ promoter methylation, DNMT1, GnAQ expression, and GnRH secretion following treatment with different concentrations of folate were analyzed. One CpG site was methylated in the GNAQ promoter with 40 mg/mL folic acid, and no CpG methylation was found in the other groups. GnAQ expression was related to folate concentration and showed a trend of increasing first and then decreasing. The GnRH expression level in the 40 mg/mL folate group was significantly higher than in the other three groups ( P < .05). These results demonstrate that the appropriate folate concentration promoted GANQ promoter methylation, which in turn affected GnRH secretion.  相似文献   
92.
93.
BackgroundThis research aimed to explore the association between the RIG-I-like receptor (RIG-I and MDA5 encoded by DDX58 and IFIH1, respectively) pathways and the risk or severity of hand, foot, and mouth disease caused by enterovirus 71 (EV71-HFMD). In this context, we explored the influence of gene methylation and polymorphism on EV71-HFMD.Methodology/Principal findings60 healthy controls and 120 EV71-HFMD patients, including 60 mild EV71-HFMD and 60 severe EV71-HFMD patients, were enrolled. First, MiSeq was performed to explore the methylation of CpG islands in the DDX58 and IFIH1 promoter regions. Then, DDX58 and IFIH1 expression were detected in PBMCs using RT-qPCR. Finally, imLDR was used to detect DDX58 and IFIH1 single-nucleotide polymorphism (SNP) genotypes. Severe EV71-HFMD patients exhibited higher DDX58 promoter methylation levels than healthy controls and mild EV71-HFMD patients. DDX58 promoter methylation was significantly associated with severe HFMD, sex, vomiting, high fever, neutrophil abundance, and lymphocyte abundance. DDX58 expression levels were significantly lower in mild patients than in healthy controls and lower in severe patients than in mild patients. Binary logistic regression analysis revealed statistically significant differences in the genotype frequencies of DDX58 rs3739674 between the mild and severe groups. GeneMANIA revealed that 19 proteins displayed correlations with DDX58, including DHX58, HERC5, MAVS, RAI14, WRNIP1 and ISG15, and 19 proteins displayed correlations with IFIH1, including TKFC, IDE, MAVS, DHX58, NLRC5, TSPAN6, USP3 and DDX58.Conclusions/SignificanceDDX58 expression and promoter methylation were associated with EV71 infection progression, especially in severe EV71-HFMD patients. The effect of DDX58 in EV71-HFMD is worth further attention.  相似文献   
94.
The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.  相似文献   
95.
96.
Monoclonal antibodies represent important weapons in our arsenal to against the COVID-19 pandemic. However, this potential is severely limited by the time-consuming process of developing effective antibodies and the relative high cost of manufacturing. Herein, we present a rapid and cost-effective lipid nanoparticle (LNP) encapsulated-mRNA platform for in vivo delivery of SARS-CoV-2 neutralization antibodies. Two mRNAs encoding the light and heavy chains of a potent SARS-CoV-2 neutralizing antibody HB27, which is currently being evaluated in clinical trials, were encapsulated into clinical grade LNP formulations (named as mRNA-HB27-LNP). In vivo characterization demonstrated that intravenous administration of mRNA-HB27-LNP in mice resulted in a longer circulating half-life compared with the original HB27 antibody in protein format. More importantly, a single prophylactic administration of mRNA-HB27-LNP provided protection against SARS-CoV-2 challenge in mice at 1, 7 and even 63 days post administration. In a close contact transmission model, prophylactic administration of mRNA-HB27-LNP prevented SARS-CoV-2 infection between hamsters in a dose-dependent manner. Overall, our results demonstrate a superior long-term protection against SARS-CoV-2 conferred by a single administration of this unique mRNA antibody, highlighting the potential of this universal platform for antibody-based disease prevention and therapy against COVID-19 as well as a variety of other infectious diseases.Subject terms: Biological techniques, Immunology  相似文献   
97.
To determine whether selective impairment of cardiac sarcoplasmic reticulum (SR) Ca(2+) transport may drive the progressive functional deterioration leading to heart failure, transgenic mice, overexpressing a phospholamban Val(49) --> Gly mutant (2-fold), which is a superinhibitor of SR Ca(2+)-ATPase affinity for Ca(2+), were generated, and their cardiac phenotype was examined longitudinally. At 3 months of age, the increased EC(50) level of SR Ca(2+) uptake for Ca(2+) (0.67 +/- 0.09 microm) resulted in significantly higher depression of cardiomyocyte rates of shortening (57%), relengthening (31%), and prolongation of the Ca(2+) signal decay time (165%) than overexpression (2-fold) of wild type phospholamban (68%, 64%, and 125%, respectively), compared with controls (100%). Echocardiography also revealed significantly depressed function and impaired beta-adrenergic responses in mutant hearts. The depressed contractile parameters were associated with left ventricular remodeling, recapitulation of fetal gene expression, and hypertrophy, which progressed to dilated cardiomyopathy with interstitial tissue fibrosis and death by 6 months in males. Females also had ventricular hypertrophy at 3 months but exhibited normal systolic function up to 12 months of age. These results suggest a causal relationship between defective SR Ca(2+) cycling and cardiac remodeling leading to heart failure, with a gender-dependent influence on the time course of these alterations.  相似文献   
98.
We examined expression of retinal dehydrogenase (RALDH) types 1 and 2 in liver and lung, and the effect of vitamin A status on testis expression by in situ hybridization. Liver expressed RALDH1 and RALDH2 only in stellate cells and hepatocytes, respectively. Lung expressed RALDH1 and RALDH2 throughout the epithelia of the airways, from the principal bronchi to the respiratory bronchiole. Vitamin A-sufficient rats expressed RALDH1 in spermatocytes, with less intense expression in spermatogonia and spermatids, and expressed RALDH2 in interstitial cells, spermatogonia, and spermatocytes. Neither Sertoli nor peritubular cells showed detectable RALDH1 or RALDH2 mRNA. Vitamin A deficiency produced a sevenfold increase in RALDH1 and a 70-fold decrease in RALDH2 mRNA in testis. In each case, the net change reflected extensive loss of germ cells, increased intensity of expression in residual germ cells, and expression in Sertoli and peritubular cells. Low-dose RA relatively early during vitamin A depletion supported spermatogenesis and affected expression of both RALDHs, but did not reinstate "vitamin A normal" expression patterns. These results show that: RALDH1 and RALDH2 have distinct mRNA expression patterns in multiple cell types in three vitamin A target tissues; RALDH expression occurs in cell types that express cellular retinol-binding protein and retinol dehydrogenase isozymes (except stellate cells, for which retinol dehydrogenase expression remains unknown); vitamin A deficiency and RA supplementation affects the loci and intensity of RALDH mRNAs in testis; and low-dose RA does not substitute completely for retinol. Overall, these data provide insight into the unique functions of RALDH1 and RALDH2 in retinoid metabolism.  相似文献   
99.
100.
Urothelial surface is covered by numerous plaques (consisting of asymmetric unit membranes or AUM) that are interconnected by ordinary looking hinge membranes. We describe an improved method for purifying bovine urothelial plaques using 2% sarkosyl and 25 mM NaOH to remove contaminating membrane and peripheral proteins selectively. Highly purified plaques interconnected by intact hinge areas were obtained, indicating that the hinges are as detergent-insoluble as the plaques. These plaque/hinge preparations contained uroplakins, an as yet uncharacterized 18-kDa plaque-associated protein, plus an 85-kDa glycoprotein that is known to be hinge-associated in situ. Examination of the isolated, in vitro-resealed bovine AUM vesicles by quick-freeze deep-etch showed that each AUM particle consists of a 16-nm, luminally exposed "head" anchored to the lipid bilayer via a 9-mm transmembranous "tail", and that an AUM plaque can break forming several smaller plaques separated by newly formed particle-free, hinge-like areas. These data lend support to our recently proposed three-dimensional model of mouse urothelial plaques. In addition, our findings suggest that urothelial plaques are dynamic structures that can rearrange giving rise to new plaques with intervening hinges; that the entire urothelial apical surface (both plaque and hinge areas) is highly specialized; and that these two membrane domains may be equally important in fulfilling some of the urothelial functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号