首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1796篇
  免费   136篇
  国内免费   202篇
  2024年   1篇
  2023年   22篇
  2022年   51篇
  2021年   94篇
  2020年   68篇
  2019年   95篇
  2018年   84篇
  2017年   61篇
  2016年   89篇
  2015年   114篇
  2014年   130篇
  2013年   143篇
  2012年   152篇
  2011年   134篇
  2010年   86篇
  2009年   84篇
  2008年   102篇
  2007年   77篇
  2006年   82篇
  2005年   68篇
  2004年   63篇
  2003年   45篇
  2002年   42篇
  2001年   37篇
  2000年   35篇
  1999年   35篇
  1998年   17篇
  1997年   13篇
  1996年   15篇
  1995年   15篇
  1994年   10篇
  1993年   9篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2134条查询结果,搜索用时 515 毫秒
101.
The antiviral efficacy of interferons (IFNs) was evaluated using a vaccinia intranasal infection model in mice in this study. We provide evidence that intranasal administration of IFN-alpha and IFN-gamma (days -1 to +3) resulted in 100 and 90% survival against a lethal respiratory vaccinia infection (8 LD50) in mice, respectively; whereas no animals in the placebo group survived through the study period (21 days). The IFN treatment consisted of a single daily dose of 5x10(3) U per mouse for 5 consecutive days. The efficacy of IFN-gamma was evident even when the IFN-gamma treatments started 1-2 days after infection and when a lower dose (2x10(3) U per mouse) was used. The treatment of IFN-alpha and IFN-gamma reduced the virus titers in the lungs of infected mice by 1000-10,000-fold, when the administration started 1 day after infection. Our data suggest that IFN-alpha and IFN-gamma are effective in protecting vaccinia-infected mice from viral replication in lungs and mortality, and may be beneficial in other human orthopoxvirus infections.  相似文献   
102.
Honokiol, a biphenyl-type neolignan, which shows the remarkable neurotrophic effect in primary cultured rat cortical neurons, has been effectively synthesized in 21% yield over 14 steps starting from 5-bromosalicylic acid and p-hydroxybenzoic acid by utilizing Pd-catalyzed Suzuki-Miyaura coupling reaction as a key step. Additionally, the structure-activity relationship between neurite outgrowth-promoting activity and its O-methylated and/or its hydrogenated analogues was examined in the primary cultures of fetal rat cortical neurons, suggesting that 5-allyl and 4'-hydroxyl groups are essential for affecting the neurotrophic activity of honokiol.  相似文献   
103.
TMC-95A has been characterized as a potent proteasome inhibitor that binds to enzymes non-covalently at low nanomolar concentrations. Herein, the neuritogenic activity of TMC-95A in PC12 rat pheochromocytoma cells is reported for the first time. TMC-95A induced a positive neurite initiation of PC12 cells at concentration ranging from 1 to 20 microM.  相似文献   
104.
Rab5 is a small GTPase that regulates early endosome fusion. We present here the crystal structure of the Rab5 GTPase domain in complex with a GTP analog and the C-terminal domain of effector Rabaptin5. The proteins form a dyad-symmetric Rab5-Rabaptin5(2)-Rab5 ternary complex with a parallel coiled-coil Rabaptin5 homodimer in the middle. Two Rab5 molecules bind independently to the Rabaptin5 dimer using their switch and interswitch regions. The binding does not involve the Rab complementarity-determining regions. We also present the crystal structures of two distinct forms of GDP-Rab5 complexes, both of which are incompatible with Rabaptin5 binding. One has a dislocated and disordered switch I but a virtually intact switch II, whereas the other has its beta-sheet and both switch regions reorganized. Biochemical and functional analyses show that the crystallographically observed Rab5-Rabaptin5 complex also exists in solution, and disruption of this complex by mutation abrogates endosome fusion.  相似文献   
105.
Lyophilization is the most popular method for achieving improved stability of labile biopharmaceuticals, but a significant fraction of product activity can be lost during processing due to stresses that occur in both the freezing and the drying stages. The effect of the freezing rate on the recovery of herpes simplex virus 2 (HSV-2) infectivity in the presence of varying concentrations of cryoprotectant excipients is reported here. The freezing conditions investigated were shelf cooling (223 K), quenching into slush nitrogen (SN2), and plunging into melting propane cooled in liquid nitrogen (LN2). The corresponding freezing rates were measured, and the ice crystal sizes formed within the samples were determined using scanning electron microscopy (SEM). The viral activity assay demonstrated the highest viral titer recovery for nitrogen cooling in the presence of low (0.25% w/v sucrose) excipient concentration. The loss of viral titer in the sample cooled by melting propane was consistently the highest among those results from the alternative cooling methods. However, this loss could be minimized by lyophilization at lower temperature and higher vacuum conditions. We suggest that this is due to a higher ratio of ice recrystallization for the sample cooled by melting propane during warming to the temperature at which freeze-drying was carried out, as smaller ice crystals readily enlarge during warming. Under the same freezing condition, a higher viral titer recovery was obtained with a formulation containing a higher concentration of sugar excipients. The reason was thought to be twofold. First, sugars stabilize membranes and proteins by hydrogen bonding to the polar residues of the biomolecules, working as a water substitute. Second, the concentrated sugar solution lowers the nucleation temperature of the water inside the virus membrane and prevents large ice crystal formation within both the virus and the external medium.  相似文献   
106.

Background  

Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base.  相似文献   
107.
Wu H  Tian Y  Liu B  Lu H  Wang X  Zhai J  Jin H  Yang P  Xu Y  Wang H 《Journal of proteome research》2004,3(6):1201-1209
The design and characterization of titania-based and alumina-based Poly(dimethylsiloxane) (PDMS) microfluidics enzymatic-reactors along with their analytical features in coupling with MALDI-TOF and ESI-MS were reported. Microfluidics with microchannel and stainless steel tubing (SST) were fabricated using PDMS casting and O(2)-plasma techniques, and were used for the preparation of an enzymatic-reactor. Plasma oxidation for the PDMS microfluidic system enabled the channel wall of the microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups act as anchors onto the microchannel wall linked covalently with the hydroxyl groups of trypsin-encapsulated sol matrix. As a result, the trypsin-encapsulated gel matrix was anchored onto the wall of the microchannel, and the leakage of gel matrix from the microchannel was effectively prevented. A feature of the microfluidic enzymatic-reactors is the feasibility of performing on-line protein analysis by attached SST electrode and replaceable tip. The success of trypsin encapsulation was investigated by AFM imaging, assay of enzymatic activity, CE detection, and MALDI-TOF and ESI-MS analysis. The lab-made devices provide an excellent extent of digestion even at a fast flow rate of 7.0 microL/min, which affords the very short residence time of ca. 2 s. With the present device, the digestion time was significantly shortened compared to conventional tryptic reaction schemes. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are required for high-throughput protein identification.  相似文献   
108.
Direct interaction of focal adhesion kinase with p190RhoGEF   总被引:12,自引:0,他引:12  
Focal adhesion kinase (FAK) is a protein-tyrosine kinase that associates with multiple cell surface receptors and signaling proteins through which it can modulate the activity of several intracellular signaling pathways. FAK activity can influence the formation of distinct actin cytoskeletal structures such as lamellipodia and stress fibers in part through effects on small Rho GTPases, although the molecular interconnections of these events are not well defined. Here, we report that FAK interacts with p190RhoGEF, a RhoA-specific GDP/GTP exchange factor, in neuronal cells and in brain tissue extracts by co-immunoprecipitation and co-localization analyses. Using a two-hybrid assay and deletion mutagenesis, the binding site of the FAK C-terminal focal adhesion targeting (FAT) domain was identified within the C-terminal coiled-coil domain of p190RhoGEF. Binding was independent of a LD-like binding motif within p190RhoGEF, yet FAK association was disrupted by a mutation (Leu-1034 to Ser) that weakens the helical bundle structure of the FAK FAT domain. Neuro-2a cell binding to laminin increased endogenous FAK and p190RhoGEF tyrosine phosphorylation, and co-transfection of a dominant-negative inhibitor of FAK activity, termed FRNK, inhibited lamininstimulated p190RhoGEF tyrosine phosphorylation and p21 RhoA GTP binding. Overexpression of FAK in Neuro-2a cells increased both endogenous p190RhoGEF tyrosine phosphorylation and RhoA activity, whereas these events were inhibited by FRNK co-expression. Because insulin-like growth factor 1 treatment of Neuro-2a cells increased FAK tyrosine phosphorylation and enhanced p190RhoGEF-mediated activation of RhoA, our results support the conclusion that FAK association with p190RhoGEF functions as a signaling pathway downstream of integrins and growth factor receptors to stimulate Rho activity.  相似文献   
109.
Zhu G  Zhai P  He X  Terzyan S  Zhang R  Joachimiak A  Tang J  Zhang XC 《Biochemistry》2003,42(21):6392-6399
GGAs are a family of vesicle-coating regulatory proteins that function in intracellular protein transport. A GGA molecule contains four domains, each mediating interaction with other proteins in carrying out intracellular transport. The GAT domain of GGAs has been identified as the structural entity that binds membrane-bound ARF, a molecular switch regulating vesicle-coat assembly. It also directly interacts with rabaptin5, an essential component of endosome fusion. A 2.8 A resolution crystal structure of the human GGA1 GAT domain is reported here. The GAT domain contains four helices and has an elongated shape with the longest dimension exceeding 80 A. Its longest helix is involved in two structural motifs: an N-terminal helix-loop-helix motif and a C-terminal three-helix bundle. The N-terminal motif harbors the most conservative amino acid sequence in the GGA GAT domains. Within this conserved region, a cluster of residues previously implicated in ARF binding forms a hydrophobic surface patch, which is likely to be the ARF-binding site. In addition, a structure-based mutagenesis-biochemical analysis demonstrates that the C-terminal three-helix bundle of this GAT domain is responsible for the rabaptin5 binding. These structural characteristics are consistent with a model supporting multiple functional roles for the GAT domain.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号