首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   28篇
  国内免费   1篇
  2023年   8篇
  2022年   6篇
  2021年   14篇
  2020年   11篇
  2019年   17篇
  2018年   18篇
  2017年   19篇
  2016年   22篇
  2015年   18篇
  2014年   16篇
  2013年   28篇
  2012年   33篇
  2011年   27篇
  2010年   16篇
  2009年   11篇
  2008年   14篇
  2007年   11篇
  2006年   14篇
  2005年   15篇
  2004年   16篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有364条查询结果,搜索用时 31 毫秒
111.
112.
Chinese hamster ovary (CHO) cells are widely used in the biopharmaceutical industry. In the creation of mammalian cell lines plasmid DNA carrying the gene‐of‐interest integrates randomly into the host cell genome, which results in variable levels of gene expression between cell lines due to gene silencing mechanisms. In addition, cell lines often show unstable protein production during long‐term culture. This means that a large number of clones need to be screened in order to isolate stable, high producing cell lines making mammalian cell line development a long and laborious process. In this study an expression platform incorporating a Ubiquitous Chromatin Opening Element (UCOE; which are proposed to maintain chromatin in an open state) has been utilised for the expression of eGFP in CHO cells. Cell lines containing a UCOE vector, showed a significantly higher and more consistent eGFP expression than the non‐UCOE cell lines without DHFR amplification. To further improve recombinant protein production cell lines were amplified with methotrexate (MTX). UCOE cell lines showed improved growth in MTX therefore amplification to 250 nM MTX was achieved following a one‐step amplification procedure. However, non‐UCOE cell lines showed higher levels of eGFP production following MTX amplification. In addition, UCOE cell lines did not improve stability during long‐term culture in the absence of selective pressure. Stable eGFP production was achieved for all cell lines when MTX is present. Finally, UCOE cell lines displayed more consistent response to external stimuli than non‐UCOE cell lines, suggesting that UCOE cell lines are less prone to clonal variability. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1014–1025, 2015  相似文献   
113.
Production of secreted mammalian proteins for structural and biophysical studies can be challenging, time intensive, and costly. Here described is a time and cost efficient protocol for secreted protein expression in mammalian cells and one step purification using nickel affinity chromatography. The system is based on large scale transient transfection of mammalian cells in suspension, which greatly decreases the time to produce protein, as it eliminates steps, such as developing expression viruses or generating stable expressing cell lines. This protocol utilizes cheap transfection agents, which can be easily made by simple chemical modification, or moderately priced transfection agents, which increase yield through increased transfection efficiency and decreased cytotoxicity. Careful monitoring and maintaining of media glucose levels increases protein yield. Controlling the maturation of native glycans at the expression step increases the final yield of properly folded and functional mammalian proteins, which are ideal properties to pursue X-ray crystallography. In some cases, single step purification produces protein of sufficient purity for crystallization, which is demonstrated here as an example case.  相似文献   
114.
115.
Demir  Ahmet U.  Ardic  Sadik  Firat  Hikmet  Karadeniz  Derya  Aksu  Murat  Ucar  Zeynep Zeren  Sevim  Serhan  Ozgen  Fuat  Yilmaz  Hikmet  Itil  Oya  Peker  Yuksel  Aygul  Fatma  Kiran  Sibel  Gelbal  Selahattin  Cepni  Zafer  Akozer  Mehmet 《Sleep and biological rhythms》2015,13(4):298-308
Sleep and Biological Rhythms - Sleep disorders constitute an important public health problem. Prevalence of sleep disorders in Turkish adult population was investigated in a nationwide...  相似文献   
116.
117.
Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.  相似文献   
118.
Background aimsAdipose tissue-derived mesenchymal stromal cells (MSCs) have a higher capacity for proliferation and differentiation compared with other cell lineages. Although distraction osteogenesis is the most important therapy for treating bone defects, this treatment is restricted in many situations. The aim of this study was to examine the therapeutic potential of adipose tissue-derived MSCs and osteoblasts differentiated from adipose tissue-derived MSCs in the treatment of bone defects.MethodsBone defects were produced in the tibias of New Zealand rabbits that had previously undergone adipose tissue extraction. Tibial osteotomy was performed, and a distractor was placed on the right leg of the rabbits. The rabbits were placed in control (group I), stem cell (group II) and osteoblast-differentiated stem cell (group III) treatment groups. The rabbits were sacrificed, and the defect area was evaluated by radiologic, biomechanical and histopathologic tests to examine the therapeutic effects of adipose tissue-derived MSCs.ResultsRadiologic analyses revealed that callus density and the ossification rate increased in group III compared with group I and group II. In biomechanical tests, the highest ossification rate was observed in group III. Histopathologic studies showed that the quality of newly formed bone and the number of cells active in bone formation were significantly higher in group III rabbits compared with group I and group II rabbits.ConclusionsThese data reveal that osteoblasts differentiated from adipose tissue-derived MSCs shorten the consolidation period of distraction osteogenesis. Stem cells could be used as an effective treatment for bone defects.  相似文献   
119.
Molecular Biology Reports - Valproic acid (VPA) is a selective histone deacetylation (HDAC) inhibitor and exerts anti-cancer properties in different types of cancer. The epithelial-to-mesenchymal...  相似文献   
120.
Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号