首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   28篇
  国内免费   1篇
  347篇
  2023年   8篇
  2022年   6篇
  2021年   14篇
  2020年   11篇
  2019年   17篇
  2018年   18篇
  2017年   19篇
  2016年   22篇
  2015年   18篇
  2014年   15篇
  2013年   28篇
  2012年   31篇
  2011年   24篇
  2010年   16篇
  2009年   11篇
  2008年   14篇
  2007年   11篇
  2006年   14篇
  2005年   15篇
  2004年   15篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有347条查询结果,搜索用时 0 毫秒
91.
The role of the ErbB3 receptor in signal transduction is to augment the signaling repertoire of active heterodimeric ErbB receptor complexes through activating the PI3K/AKT pathway, which in turn promotes survival and proliferation. ErbB3 has recently been proposed to be involved in acquired resistance to tyrosine kinase inhibitors (TKIs), and is therefore a promising new drug cancer target. Since ErbB3 is a kinase defective receptor, it cannot be targeted by small molecule inhibitors, whereas monoclonal antibodies may offer a viable strategy for pharmacological intervention. In this study, we have utilized DNA electroporation (DNA-EP) to generate a set of novel hybridomas directed against human ErbB3, which have been characterized for their biochemical and functional properties and selected for their ability to negatively regulate the ErbB3-mediated signaling pathway. In vitro, the anti-ErbB3 antibodies modulate the growth rate of cancer cells of different origins. In vivo they show antitumoral properties in a xenograft model of human pancreatic tumor and in the ErbB2-driven carcinogenesis genetically engineered mouse model (GEMM) for mammary tumor, the BALB/neuT. Our data confirm that downregulating the ErbB3-mediated signals with the use of anti-ErbB3 monoclonal antibodies is both feasible and relevant for therapeutic purposes and provides new opportunities for novel anti-ErbB3 combinatory strategies for cancer treatment.  相似文献   
92.
Initial rates of E1-catalyzed E2 transthiolation have been used as a reporter function to probe the mechanism of 125I-ubiquitin transfer between activation and ligation half-reactions of ubiquitin conjugation. A functional survey of 11 representative human E2 paralogs reveals similar Km for binding to human Uba1 ternary complex (Km(ave)=121±72 nm) and kcat for ubiquitin transfer (kcat(ave)=4.0±1.2 s(-1)), suggesting that they possess a conserved binding site and transition state geometry and that they compete for charging through differences in intracellular concentration. Sequence analysis and mutagenesis localize this binding motif to three basic residues within Helix 1 of the E2 core domain, confirmed by transthiolation kinetics. Partial conservation of the motif among E2 paralogs not recognized by Uba1 suggests that another factor(s) account for the absolute specificity of cognate E2 binding. Truncation of the Uba1 carboxyl-terminal β-grasp domain reduces cognate Ubc2b binding by 31-fold and kcat by 3.5×10(4)-fold, indicating contributions to E2 binding and transition state stabilization. Truncation of the paralogous domain from the Nedd8 activating enzyme has negligible effect on cognate Ubc12 transthiolation but abrogates E2 specificity toward non-cognate carrier proteins. Exchange of the β-grasp domains between ubiquitin and Nedd8 activating enzymes fails to reverse the effect of truncation. Thus, the conserved Helix 1 binding motif and the β-grasp domain direct general E2 binding, whereas the latter additionally serves as a specificity filter to exclude charging of non-cognate E2 paralogs in order to maintain the fidelity of downstream signaling.  相似文献   
93.
Impacts of electric and magnetic fields (EFs and MFs) on a biological organism vary depending on their application style, time, and intensities. High intensity MF and EF have destructive effects on plants. However, at low intensities, these phenomena are of special interest because of the complexity of plant responses. This study reports the effects of continuous, low-intensity static MF (7 mT) and EF (20 kV/m) on growth and antioxidant status of shallot (Allium ascalonicum L.) leaves, and evaluates whether shifts in antioxidant status of apoplastic and symplastic area help plants to adapt a new environment. Growth was induced by MF but EF applied emerged as a stress factor. Despite a lack of visible symptoms of injury, lipid peroxidation and H?O? levels increased in EF applied leaves. Certain symplastic antioxidant enzyme activities and non-enzymatic antioxidant levels increased in response to MF and EF applications. Antioxidant enzymes in the leaf apoplast, by contrast, were found to show different regulation responses to EF and MF. Our results suggest that apoplastic constituents may work as potentially important redox regulators sensing and signaling environmental changes. Static continuous MF and EF at low intensities have distinct impacts on growth and the antioxidant system in plant leaves, and weak MF is involved in antioxidant-mediated reactions in the apoplast, resulting in overcoming a possible redox imbalance.  相似文献   
94.
The effect of power frequency electric field (EF) on nerve regeneration was investigated on a rat peroneal nerve crush injury model. The animals were assigned to three groups: 50 Hz EF and Static EF groups were exposed at 10 kV/m. The sham group was kept in the same setting without any EF applications. EF was uninterruptedly applied for 21 days postoperatively. Repeated measures analysis of daily walking tracks during EF exposure demonstrated lower toe spread recovery (TSR) in the 50 Hz EF group. Significant difference across the groups was found only at days 7, 8, 12, 16, 17, 20, and 21 when TSR was analyzed for each measurement time. Print length recovery and peroneal function index did not differ across the groups. Walking track parameters were found to recover to their baseline values by day 28 in all groups. Day 14 but not day 21 measurements revealed smaller nerve cross-sectional area, lower total regenerating axon area, and higher mean myelin debris area in 50 Hz EF group. Both day 14 and 21 measurements revealed higher total myelin debris area, lower EDL muscle weight, and lack of significant enlargement in nerve cross-section distal to the injury, compared to the normal counterpart in 50 Hz EF group. All differences were in keeping with lower rates of Wallerian degeneration and nerve regeneration in 50 Hz EF group. When walking track, histomorphometry and muscle weight are considered individually, their differences across the groups may appear to be subtle to derive a conclusion for a 50 Hz EF effect. However, their concordance with each other in direction of effect suggests that continuous 50 Hz EF exposure has a weak effect that is detrimental mostly to the rate of early nerve regeneration in this axonotmetic injury model. Recovery of walking tracks was not different between Static EF and Sham groups. This suggests that the surface charges that may indirectly affect walking behaviors of the rats, do not account for the lower recovery of TSR in 50 Hz EF group. Differences in nerve regeneration between 50 Hz EF and Static EF groups suggests that electric induction may be required for pure EF effects even though the estimated density of induced fields is not above the endogenous background level for the 50 Hz EF exposure in this study.  相似文献   
95.
Inactivated replication forks may be reversed by the annealing of leading- and lagging-strand ends, resulting in the formation of a Holliday junction (HJ) adjacent to a DNA double-strand end. In Escherichia coli mutants deficient for double-strand end processing, resolution of the HJ by RuvABC leads to fork breakage, a reaction that we can directly quantify. Here we used the HJ-specific resolvase RusA to test a putative role of the RuvAB helicase in replication fork reversal (RFR). We show that the RuvAB complex is required for the formation of a RusA substrate in the polymerase III mutants dnaEts and holD, affected for the Pol III catalytic subunit and clamp loader, and in the helicase mutant rep. This finding reveals that the recombination enzyme RuvAB targets forks in vivo and we propose that it directly converts forks into HJs. In contrast, RFR occurs in the absence of RuvAB in the dnaNts mutant, affected for the processivity clamp of Pol III, and in the priA mutant, defective for replication restart. This suggests alternative pathways of RFR.  相似文献   
96.
97.
Methicillin resistance in staphylococci is primarily due to the presence of a mecA gene which encodes the novel penicillin binding protein2a. Some chromosomal factors such as femA and femB also participate in the expression of methicillin resistance. This study was designed to detect methicillin resistance by cefoxitin disk diffusion and penicillin binding protein2a latex agglutination methods, and to compare mecA, femA, femB and femX gene positivities. A total of 60 MRSA isolates were included in the evaluation. PCR analysis showed that all isolates were positive for mecA and femA genes. Seven of these isolates tested negative by the latex agglutination test. Fifteen isolates were positive for femB and 28 isolates for femX gene. This study implicated that for the determination of methicillin resistance, latex agglutination test is the least reliable method when compared to PCR and cefoxitin disk diffusion test. femA gene shows more correlation than femB and femX with methicillin resistance.  相似文献   
98.
99.
The contribution of predators and abiotic factors to the regulation of the biomass and seasonal succession of crustacean zooplankton was studied in Lake Rehtijärvi (southern Finland). Field data in combination with bioenergetics modeling indicated that invertebrate planktivory by Chaoborus depressed cladoceran populations during early summer. In particular, bosminids that generally form the spring biomass peak of cladocerans in stratified temperate lakes did not appear in the samples until July. In July, predation pressure by chaoborids was relaxed due to their emergence period and cladoceran population growth appeared to be limited by predation by planktivorous fish. The effect of fish predation was amplified by reduced refuge availability for cladocerans. The concentration of dissolved oxygen below the epilimnion was depleted, forcing cladocerans to move upward to less turbid and thus more dangerous water layers. The effect of size selective predation by fish resulted in reduced mean size of cladocerans during the period when refuge thickness (thickness of the water layer with oxygen concentration <1 mg l?1 and water turbidity >30 NTU) was lowest. The results confirmed that in clay-turbid lakes, invertebrate predators could be the main regulators of herbivorous zooplankton even when cyprinid fish are abundant.  相似文献   
100.
Predation often represents the prevailing process shaping aquatic ecosystems. As foraging and antipredatory behaviour frequently relate to vision, turbidity may often impair the interactions between the predator and its prey, depending on prey type and source and level of turbidity. We studied the effect of inorganic turbidity (0–30 NTU) on the effectiveness of fish feeding on two types of prey in different habitats: free-swimming cladoceran (Daphnia pulex) in open water and plant-associated cladoceran (Sida crystallina) attached to Nuphar lutea leaves. For the planktivore, we used vision-oriented perch (Perca fluviatilis) common in the littoral zone of temperate lakes. In our study, increasing inorganic turbidity did not appear to initiate any significant change in the feeding efficiency of perch on free-swimming Daphnia pulex. However, we saw a markedly different feeding efficiency when perch targeted plant-attached Sida crystallina. Our results substantiate that floating-leaved macrophytes in turbid lakes may provide a favourable habitat for plant-attached cladocerans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号