首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16517篇
  免费   1244篇
  国内免费   1214篇
  18975篇
  2024年   43篇
  2023年   238篇
  2022年   573篇
  2021年   949篇
  2020年   571篇
  2019年   760篇
  2018年   758篇
  2017年   557篇
  2016年   787篇
  2015年   1038篇
  2014年   1288篇
  2013年   1413篇
  2012年   1506篇
  2011年   1364篇
  2010年   826篇
  2009年   743篇
  2008年   843篇
  2007年   702篇
  2006年   561篇
  2005年   503篇
  2004年   417篇
  2003年   362篇
  2002年   269篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   158篇
  1997年   135篇
  1996年   121篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
11.
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.  相似文献   
12.
13.
14.
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.  相似文献   
15.
16.
Long-term activation of inositol 1,4,5-trisphosphate receptors (IP3Rs) leads to their degradation by the ubiquitin–proteasome pathway. The first and rate-limiting step in this process is thought to be the association of conformationally active IP3Rs with the erlin1/2 complex, an endoplasmic reticulum–located oligomer of erlin1 and erlin2 that recruits the E3 ubiquitin ligase RNF170, but the molecular determinants of this interaction remain unknown. Here, through mutation of IP3R1, we show that the erlin1/2 complex interacts with the IP3R1 intralumenal loop 3 (IL3), the loop between transmembrane (TM) helices 5 and 6, and in particular, with a region close to TM5, since mutation of amino acids D-2471 and R-2472 can specifically block erlin1/2 complex association. Surprisingly, we found that additional mutations in IL3 immediately adjacent to TM5 (e.g., D2465N) almost completely abolish IP3R1 Ca2+ channel activity, indicating that the integrity of this region is critical to IP3R1 function. Finally, we demonstrate that inhibition of the ubiquitin-activating enzyme UBE1 by the small-molecule inhibitor TAK-243 completely blocked IP3R1 ubiquitination and degradation without altering erlin1/2 complex association, confirming that association of the erlin1/2 complex is the primary event that initiates IP3R1 processing and that IP3R1 ubiquitination mediates IP3R1 degradation. Overall, these data localize the erlin1/2 complex–binding site on IP3R1 to IL3 and show that the region immediately adjacent to TM5 is key to the events that facilitate channel opening.  相似文献   
17.
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.  相似文献   
18.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   
19.
Breast milk is a complex liquid rich in immunological components that affect the development of the infant's immune system. Exosomes are membranous vesicles of endocytic origin that are found in various body fluids and that can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, are packaged inside exosomes in human breast milk. Here, we identified 602 unique miRNAs originating from 452 miRNA precursors (pre-miRNAs) in human breast milk exosomes using deep sequencing technology. We found that, out of 87 well-characterized immune-related pre-miRNAs, 59 (67.82%) are presented and enriched in breast milk exosomes (P < 10(-16), χ(2) test). In addition, compared with exogenous synthetic miRNAs, these endogenous immune-related miRNAs are more resistant to relatively harsh conditions. It is, therefore, tempting to speculate that these exosomal miRNAs are transferred from the mother's milk to the infant via the digestive tract, and that they play a critical role in the development of the infant immune system.  相似文献   
20.
α淀粉酶广泛应用于粮食加工、食品、酿造、发酵、纺织品和医药工业[1].由于固定化酶的优点,国内外研究人员对固定化糖化酶[2,3]和固定化α淀粉酶[4]的制备及在淀粉酶法生产葡萄糖方面的应用作了大量的研究,显示了工业应用前景.然而,迄今为止,用磁性载体固定化α淀粉酶尚未见报道.我们用磁性聚乙二醇胶体粒子作载体,制备出具有磁响应性强、稳定性强、活力高的固定化α淀粉酶.由于具有磁响应性,可借助外部磁场方便简单地回收酶,为该酶工业化生产葡萄糖提供了一种新的途径.而且,由于磁性的优点,也为该酶在食品、医药、纺织…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号