首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7330篇
  免费   561篇
  国内免费   538篇
  2024年   6篇
  2023年   87篇
  2022年   230篇
  2021年   442篇
  2020年   253篇
  2019年   323篇
  2018年   282篇
  2017年   243篇
  2016年   315篇
  2015年   434篇
  2014年   530篇
  2013年   544篇
  2012年   660篇
  2011年   562篇
  2010年   332篇
  2009年   351篇
  2008年   379篇
  2007年   304篇
  2006年   283篇
  2005年   208篇
  2004年   219篇
  2003年   214篇
  2002年   136篇
  2001年   136篇
  2000年   128篇
  1999年   143篇
  1998年   83篇
  1997年   70篇
  1996年   81篇
  1995年   70篇
  1994年   61篇
  1993年   31篇
  1992年   62篇
  1991年   43篇
  1990年   40篇
  1989年   22篇
  1988年   24篇
  1987年   28篇
  1986年   16篇
  1985年   33篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
排序方式: 共有8429条查询结果,搜索用时 500 毫秒
271.
272.
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental‐scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species‐independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age‐dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species‐dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea).  相似文献   
273.
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2?/? mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2?/? mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.  相似文献   
274.
Drosophila neurexin (DNRX) plays a critical role in proper architecture development and synaptic function in vivo. However, the temporal and spatial expression pattern of DNRX still remains unclear. For this study, we generated a novel Drosophila transgenic strain termed the DNRX-Gal4 transgenic line, with characteristic features in agreement with the endogenous DNRX expression pattern. DNRX expression was examined by driving the expression of a GFP reporter (nuclear-localized and membrane- localized GFP) using the DNRX-Gal4 promoter. We found that DNRX was expressed preferentially in central and motor neurons in embryos, larvae and adults, but not in glial cells. DNRX was expressed in pre- and post-synaptic areas in third instar larvae neuromuscular junctions (NMJs). Reporter expression was also observed in the salivary glands, guts, wings and legs of adult flies. In the adult brain, reporter expression was observed throughout several brain regions, including the mushroom body (MBs), antennal lobe (AL) and optic lobe neurons, which is consistent with endogenous DNRX expression via antibody staining. Interestingly, DNRX was also expressed in clock neurons. Meanwhile, we found that DNRX expression in the MBs was required for olfactory learning and memory.  相似文献   
275.
正Dear Editor,NCC(Na-Cl cotransporter)is a cotransporter mainly distributed in the distal tubule of the kidney,functioning to reabsorb sodium and chloride ions from the tubular fluid into the cells of the renal distal convoluted tubule.It is a  相似文献   
276.
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway.  相似文献   
277.
The aim of the experiment on 180 weaned piglets (8.9 kg body weight) was to investigate the influence of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility, diarrhoea incidence and numbers of faecal microbiota. The dietary treatments included a Control diet and five high fibre diets formulated with different fibre sources including wheat bran, soybean hulls, naked oat hulls, palm kernel expeller and bamboo fibre. The high fibre diets averaged 14.6% neutral detergent fibre with different non-starch polysaccharides (NSP) components and were fed ad libitum for 28 d. Faecal samples were collected during the last 3 d of the experiment and the apparent total tract digestibility of nutrients and fibre components were determined. Pigs fed the Control and wheat bran diets had a higher (≤ 0.05) average daily gain (ADG) than pigs fed the palm kernel expeller and bamboo meal diets. The reduced ADG for pigs appeared to be related to reductions in the digestibility of gross energy and dry matter, respectively. The feed-to-gain ratio was significantly higher (≤ 0.05) for pigs fed the fibre diets. The digestibility of NSP components was different among the treatments. The diarrhoea incidence was not affected by treatments. The abundance of faecal bifidobacteria was significantly higher (≤ 0.05) for pigs fed the wheat bran diet than for pigs fed the bamboo meal diet. It was concluded that the diets formulated with different fibre sources when fed to weaned piglets have different effects on pig performance, nutrient digestibility and numbers of faecal microbiota. The wheat bran diet rich in arabinoxylans enabled a better performance than the other tested diets with fibre addition.  相似文献   
278.
279.
280.
Glaucoma is one of the leading eye diseases due to the death of retinal ganglion cells. Increasing evidence suggests that retinal Müller cells exhibit the characteristics of retinal progenitor cells and can differentiate to neurons in injured retinas under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to promote the differentiation of retinal Müller cells into ganglion cells by introducing Atoh7 into the stem cells dedifferentiated from retinal Müller cells. Rat retinal Müller cells were isolated and dedifferentiated into stem cells, which were transfected with PEGFP-N1 or PEGFP-N1-Atoh7 vector, and then further induced to differentiate into ganglion cells. The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of control transfected or untransfected cells. In summary, Atoh7 promotes the differentiation of retinal Müller cells into retinal ganglion cells. This may open a new avenue for gene therapy of glaucoma by promoting optic nerve regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号