首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8748篇
  免费   665篇
  国内免费   787篇
  2024年   17篇
  2023年   158篇
  2022年   350篇
  2021年   602篇
  2020年   349篇
  2019年   468篇
  2018年   380篇
  2017年   326篇
  2016年   422篇
  2015年   569篇
  2014年   665篇
  2013年   683篇
  2012年   784篇
  2011年   673篇
  2010年   386篇
  2009年   385篇
  2008年   413篇
  2007年   343篇
  2006年   316篇
  2005年   226篇
  2004年   230篇
  2003年   220篇
  2002年   140篇
  2001年   136篇
  2000年   128篇
  1999年   144篇
  1998年   84篇
  1997年   70篇
  1996年   81篇
  1995年   70篇
  1994年   61篇
  1993年   31篇
  1992年   62篇
  1991年   43篇
  1990年   40篇
  1989年   22篇
  1988年   24篇
  1987年   28篇
  1986年   16篇
  1985年   33篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 554 毫秒
991.
A Gram-negative, non-mobile, polar single flagellum, rod-shaped bacterium WZBFD3-5A2T was isolated from a wheat soil subjected to herbicides for several years. Cells of strain WZBFD3-5A2T grow optimally on Luria-Bertani agar medium at 30?°C in the presence of 0–4.0?% (w/v) NaCl and pH 8.0. 16S rRNA gene sequence analysis revealed that strain WZBFD3-5A2T belongs to the genus Pseudomonas. Physiological and biochemical tests supported the phylogenetic affiliation. Strain WZBFD3-5A2T is closely related to Pseudomonas nitroreducens IAM1439T, sharing 99.7?% sequence similarity. DNA–DNA hybridization experiments between the two strains showed only moderate reassociation similarity (33.92?±?1.0?%). The DNA G+C content is 62.0?mol%. The predominant respiratory quinine is Q-9. The major cellular fatty acids present are C16:0 (28.55?%), C16:1ω6c or C16:1ω7c (20.94?%), C18:1ω7c (17.21?%) and C18:0 (13.73?%). The isolate is distinguishable from other related members of the genus Pseudomonas on the basis of phenotypic and biochemical characteristics. From the genotypic, chemotaxonomic and phenotypic data, it is evident that strain WZBFD3-5A2T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas nitritereducens sp. nov. is proposed. The type strain is WZBFD3-5A2T (=CGMCC 1.10702T?=?LMG 25966T).  相似文献   
992.
Xiao Y  Guan J  Ping Y  Xu C  Huang T  Zhao H  Fan H  Li Y  Lv Y  Zhao T  Dong Y  Ren H  Li X 《Nucleic acids research》2012,40(16):7653-7665
Accumulating evidence indicates that microRNAs (miRNAs) can function as oncogenes or tumor suppressor genes by controlling few key targets, which in turn contribute to the pathogenesis of cancer. The identification of cancer-related key miRNA-target interactions remains a challenge. We performed a systematic analysis of known cancer-related key interactions manually curated from published papers based on different aspects including sequence, expression and function. Known cancer-related key interactions show more miRNA binding sites (especially for 8mer binding sites), more reliable binding of miRNA to the target region, higher expression associations and broader functional coverage when compared to non-disease-related interactions. Through integrating these sequence, expression and function features, we proposed a bioinformatics approach termed PCmtI to prioritize cancer-related key interactions. Ten-fold cross-validation of our approach revealed that it can achieve an area under the receiver operating characteristic curve of 93.9%. Subsequent leave-one-miRNA-out cross-validation also demonstrated the performance of our approach. Using miR-155 as a case, we found that the top ranked interactions can account for most functions of miR-155. In addition, we further demonstrated the power of our approach by 23 recently identified cancer-related key interactions. The approach described here offers a new way for the discovery of novel cancer-related key miRNA-target interactions.  相似文献   
993.
Xu Y  Zhang Y  Guo Z  Yin H  Zeng K  Wang L  Luo J  Zhu Q  Wu L  Zhang X  Chen D 《Neurochemical research》2012,37(3):665-670
Recent studies suggest that angiogenesis and vascular endothelial growth factor (VEGF) are involved in the pathophysiology of epilepsy. However, relatively little data are available linking placenta growth factor (PIGF) with epilepsy. In this study, we assessed concentrations of PIGF in cerebrospinal fluid (CSF) of 60 epileptic patients and 24 non-seizure subjects using sandwich enzyme-linked immunosorbent assays. Epileptic patients in general had higher concentration of CSF-PIGF than controls (7.95 ± 0.88 ng/l vs. 5.87 ± 0.79 ng/l, P < 0.01). CSF-PIGF level in secondary epileptic patients (8.59 ± 1.26 ng/l) was higher than that in idiopathic epileptic patients (7.62 ± 0.20 ng/l) (P < 0.05). In idiopathic epilepsy, CSF-PIGF level in patients with high seizure frequency was higher than those in patients with low seizure frequency and seizure-free in recent 3 years (7.78 ± 0.23 ng/l vs. 7.49 ± 0.09 ng/l and 7.59 ± 0.10 ng/l, P < 0.05). Concentration of CSF-PIGF in patients with a disease duration of > 5 years was higher than those in patients with durations of 1-5 years and <1 year (7.72 ± 0.20 ng/l vs. 7.52 ± 0.09 ng/l and 7.41 ± 0.07 ng/l, P < 0.05). These results indicate that preexisting brain damage, seizure frequency and disease duration are important factors contributing to elevated PIGF.  相似文献   
994.
Sun Y  Zeng F  Zhang W  Qiao J 《Gene》2012,499(2):288-296
Antibiotic glycosyltransferases (AGts) attach unusual deoxy-sugars to aglycons so antibiotics can exert function. It has been reported that polyene macrolide (PEM) AGts have different evolutionary origin when compared with other polyketide AGts, and our previous analysis have suggested that they could be results of horizontal gene transfer (HGT) from eukaryotes. In this paper, we compared the structures of PEM AGts with structures of eukaryotes and other AGts, and then built models of the representative PEM AGts and GT-1 glycosyltransferases. We also constructed the Neighbor-Joining (NJ) trees based on the normalized Root Mean Square (RMS) distance, the Bayesian tree guided by structural alignments, and carried out analysis on several key conserved residues in PEM AGts. The NJ tree showed a close relationship between PEM AGts and eukaryotic glycosyltransferases, and Bayesian tree further supported their affinity with UDP-glucuronosyltransferases (UGTs). Analysis on key conserved residues showed that PEM AGts may have similar interaction mechanism such as in the formation of hydrogen bonds as eukaryotic glycosyltransferases. Using structure-based phylogenetic approaches, this study further supported that PEM AGts were the result of HGT between prokaryotes and eukaryotes.  相似文献   
995.
Yuan F  Chen X  Liu Y  Zhang T  Sun D  Liu J 《Chirality》2012,24(2):174-180
In this study, two isomeric ruthenium(II) complexes [Ru(bpy)(2)(p-mopip)](2+) (1) and [Ru(bpy)(2)(o-mopip)](2+) (2) (bpy = 2, 2-bipyridine; L: p-mopip = 2-(4-methoxylphenyl) imidazo [4,5-f][1,10]phenanthroline, o-mopip = 2-(2-methoxylphenyl) imidazo[4,5-f][1,10] phenan-throline) contained -OCH(3) at different positions on the phenyl ring and their enantiomers Λ-1, -2 and Δ-1, -2 displayed different properties. The cell viability of these ruthenium(II) complexes was evaluated by MTT, and complex Λ-1 has shown significant higher anticancer potency than Δ-1 against all the cell lines screened. Fluorescence microscopy and flow cytometric analyses demonstrated that complex Λ-1 was able to induce apoptosis. The interactions of complexes Λ-1, 1, and Δ-1 with bovine serum albumin (BSA) were investigated by fluorescence and circular dichroism (CD) measurements. The fluorescence quenching mechanism of BSA by complexes Λ-1, 1, and Δ-1 was determined to be a static process, and the apparent binding constant K(a) values is as follows: Λ-1 >1 > Δ-1. The number of binding sites n for all these complexes was 1. The result of CD showed that the secondary structure of BSA molecules was changed in the presence of the ruthenium(II) complex.  相似文献   
996.
997.
An aptamer-molecular beacon (MB) multiple fluorescent probe for adenosine triphosphate (ATP) assay is proposed in this article. The ATP aptamer was used as a molecular recognition part, and an oligonucleotide (short strand, SS) partially complementary with the aptamer and an MB was used as the other part. In the presence of ATP, the aptamer bound with it, accompanied by the hybridization of MB and SS and the fluorescence recovering. Wherever there is only very weak fluorescence can be measured in the absence of ATP. Based on the relationship of recovering fluorescence and the concentration of ATP, a method for quantifying ATP has been developed. The fluorescence intensity was proportional to the concentration of ATP in the range of 10 to 500 nM with a detection limit of 0.1 nM. Moreover, this method was able to detect ATP with high selectivity in the presence of guanosine triphosphate (GTP), cytidine triphosphate (CTP), and uridine triphosphate (UTP). This method is proved to be simple with high sensitivity, selectivity, and specificity.  相似文献   
998.
Li J  He Y  He Z  Zeng P  Xu S 《Analytical biochemistry》2012,428(1):4-6
A novel nanocomposite synthesis method of amino-modified NaYF(4):Yb,Er upconversion luminescent nanoparticles and single-walled carbon nanohorns was developed via covalent linkage for the first time. The nanocomposite was covalently coupled with rabbit anti-CEA8 antibody and then used successfully as a cell labeling agent for the immunolabeling and imaging of HeLa cells.  相似文献   
999.
Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ~60 pN), as compared to the unfolding in the opposite direction (unfolding force ~ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo.  相似文献   
1000.
miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3' untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号