首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   18篇
  国内免费   5篇
  2022年   1篇
  2021年   8篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   8篇
  2015年   18篇
  2014年   23篇
  2013年   16篇
  2012年   20篇
  2011年   20篇
  2010年   16篇
  2009年   13篇
  2008年   9篇
  2007年   14篇
  2006年   5篇
  2005年   16篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有281条查询结果,搜索用时 31 毫秒
41.
42.
Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of four miRNAs in fatty livers. Upregulation of miR-34a and downregulation of miR-122 was found in livers of STZ-induced diabetic mice. These results demonstrate that distinct miRNAs are strongly dysregulated in NAFLD and hyperglycemia. Comparison between miRNA expressions in livers of ob/ob mice and STZ-administered mice further revealed upregulation of four miRNAs and downregulation of two miRNAs in livers of ob/ob mice, indicating that these miRNAs may represent a molecular signature of NAFLD. A distinctive miRNA expression pattern was identified in ob/ob mouse liver, and hierarchical clustering of this pattern could clearly discriminate ob/ob mice from either normal C57BL/6 mice or STZ-administered mice. These findings suggest an important role of miRNAs in hepatic energy metabolism and implicate the participation of miRNAs in the pathophysiological processes of NAFLD.  相似文献   
43.
Relationships between the NO synthase inhibitor and gastric and pancreaticobiliary functions measured simultaneously in the digestive state have been little studied. The aim of this study was to estimate the effect of NO synthase inhibitor on integrated digestive function in conscious dogs. A strain gauge force transducer was implanted on the gastric antrum of 6 mongrel dogs to measure gastric contractile activity and two duodenal cannulas were inserted into the proximal and distal sites to measure the gastric emptying rate and the pancreaticobiliary output into the duodenum using our novel method. Postprandial pancreatic and biliary secretion were presented as amylase and bile acid activity, respectively. Furthermore, a cervical cannula was placed into the superior vena cava as a route for the administration of NO synthase inhibitor, N omega-nitro-L-arginine (L-NNA), at a dose of 2.5 mg/kg-h. In a group given L-NNA, gastric contractile activity after ingestion was significantly enhanced, but the emptying rates of gastric solids and liquids were significantly suppressed in comparison with the control. The mean 0-1 h amylase integrated output was significantly (P < 0.05) decreased in comparison with the control, and the mean bile acid integration of 0-1 h output was also significantly (P < 0.01) decreased. A possible explanation for this observation is that smaller volumes of nutrient are delivered into the duodenum; however, it could also be that postprandial pancreaticobiliary secretion is inhibited by an alteration of blood flow or by a change in contractions of the sphincter of Oddi after the administration of L-NNA.  相似文献   
44.
45.
46.
47.
Seven lipase-producing thermophilic bacteria (ST 1, ST 4, ST 6, ST 7, ST 8, ST 9 and ST 10) were isolated from the Setapak hot spring in Malaysia. The crude extracellular lipases recovered by ultrafiltration of cell-free culture supernatant were reacted in an olive oil mixture and their lipolytic activities were compared. Identification of the bacteria was carried out using the Biolog system and biochemical tests. Strain ST 7 that exhibited the highest lipolytic activity of 4.58 U/ml was identified as belonging to the Bacillus genus. Strain ST 6 with an activity of 3.51 U/ml, was identified as Ralstonia paucula. The lipolytic activities of strains ST 1, ST 4, ST 8, ST 9 and ST 10 were 2.39, 1.84, 2.38, 1.80 and 2.62 U/ml respectively. Strains ST 1, ST 4, and ST 10 were identified as Ralstonia paucula while strains ST 8 and ST 9 were Bacillus spp. Strains ST 7 and ST 9 were tentatively identified as Bacillus thermoglucosidasius, Bacillus stearothermophilus or Bacillus coagulans, whereas strain ST 8 was tentatively identified as Bacillus subtilis.  相似文献   
48.
Decorin is a small leucine-rich proteoglycan that plays a role in control of cell proliferation, cell migration, collagen fibrillogenesis and modulation of the activity of TGF-beta. In the present study, we investigated the effects of decorin on the production of metalloproteinases (MMP-1, -2, -3, -9 and -13), tissue inhibitors of metalloproteinases (TIMP-1, -2) and cytokines (TGF-beta, IL-1beta, IL-4 and TNF-alpha). Decorin was overexpressed in cultured human gingival fibroblasts using adenovirus-mediated gene transfer. Decorin infection resulted in decreased protein levels of MMP-1 and MMP-3 whereas MMP-2 and TIMP-2 secretion was increased. MMP-9, MMP-13 and TIMP-1 were not affected by decorin infection. Cytokine measurements by ELISA showed that decorin overexpression reduced TGF-beta and IL-1beta. In contrast, IL-4 and TNF-alpha levels were markedly increased in decorin-infected cells. These results suggest that decorin could modulate the expression of certain metalloproteinases and their inhibitors, as well as the production of cytokines. Altogether, our data suggest that decorin might play a pivotal role in tissue remodeling by acting on the balance between extracellular matrix synthesis and degradation.  相似文献   
49.
In reservoirs or lakes, mixing depth affects growth and loss rates of phytoplankton populations. Based on 1-year data from the Zeya reservoir, China, we scaled the mixing depth throughout a whole year by utilizing cluster analysis, and then investigated its influence on phytoplankton dynamics and other physical and chemical parameters. Over the whole year, all physical and chemical parameters except TN and temperature had significant correlations with mixing depth, indicating that mixing depth is one of the important driving factors influencing water environment. According to mixing depth, a year can be divided into three different periods, including the thermally stratified period, isothermally mixed period, and transition period between them. When considering the former two different periods separately, mixing depth had no correlation with the phytoplankton biovolume. However, over the whole year a significant correlation was observed, which indicated that the influence of mixing depth on phytoplankton growth in the Zeya reservoir still followed Diehl’s theory. Furthermore, according to the steady-state assumption, a unimodal curve (mixing depth—phytoplankton biovolume) with a significant peak appearing at a mixing depth of 2 m was observed, closely agreeing with Diehl’ prediction.  相似文献   
50.

Background

Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.

Aim

To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.

Methods

We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.

Results

We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.

Conclusion

The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号