全文获取类型
收费全文 | 312篇 |
免费 | 43篇 |
国内免费 | 5篇 |
专业分类
360篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 8篇 |
2020年 | 6篇 |
2019年 | 7篇 |
2018年 | 8篇 |
2017年 | 8篇 |
2016年 | 18篇 |
2015年 | 25篇 |
2014年 | 30篇 |
2013年 | 26篇 |
2012年 | 29篇 |
2011年 | 26篇 |
2010年 | 19篇 |
2009年 | 21篇 |
2008年 | 11篇 |
2007年 | 13篇 |
2006年 | 5篇 |
2005年 | 14篇 |
2004年 | 15篇 |
2003年 | 13篇 |
2002年 | 12篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 2篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有360条查询结果,搜索用时 21 毫秒
71.
Functional succession of bacterioplankton on the basis of carbon source utilization ability by BIOLOG plates 总被引:1,自引:0,他引:1
Changes of bacterioplankton diversity in lake water were followed in triplicate, continuous-flow experimental tanks. Most probable numbers (MPN) were obtained for 95 different carbon sources using BIOLOG plates and were used to characterize bacterioplankton diversity. During 70 days of incubation, MPN declined for 15 of the 95 substrates while three of 95 appeared to be newly used, indicating functional succession in the bacterioplankton. Total bacterial cell abundance was constant from day 7 to day 70 of the incubation period. The succession of species composition of phyto- and zooplankton was also observed and suggested some involvement by phyto- and zooplankton species in the changes of bacterioplankton diversity. Thus, BIOLOG-based MPN assays is a simple but sensitive method for characterizing the changes in the bacterioplankton carbon utilization profile and is also useful for tracing the functional succession of bacterioplankton diversity within a community. 相似文献
72.
Zhao M Zen KC Hernandez-Borrell J Altenbach C Hubbell WL Kaback HR 《Biochemistry》1999,38(48):15970-15977
Glu126 and Arg144 in helices IV and V, respectively, in the lactose permease of Escherichia coli, which play an indispensable role in substrate binding, are charge-paired and in close proximity [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807; Zhao, M., Zen, K.-C., et al. (1999) Biochemistry 38, 7407-7412]. Since hydropathy plots indicate that these residues are at the membrane-water interface at the cytoplasmic surface of the membrane, site-directed nitroxide scanning electron paramagnetic resonance (EPR) has been carried out on this region of the permease. Thirty-one single-Cys permease mutants were spin-labeled and examined by conventional and power saturation EPR. The motional freedom of the side chains, as well as accessibility to O(2) or potassium chromium oxalate (CrOx), indicates that the loop between helices IV and V (loop IV/V) is considerably smaller than predicted by hydropathy plots, extending only from about Val132 to Phe138 and that Glu126 and Arg144 are probably within the membrane. Although ligand binding has no effect on the mobility of the labeled side chains, a marked increase in CrOx and O(2) accessibility is observed at position 137, as well as significant changes in accessibility to CrOx on one face of helix V. It is concluded that ligand binding induces a conformational change in the vicinity of the binding site, resulting in increased accessibility of position 137 in loop IV/V to solvent. 相似文献
73.
74.
Stuart Sullivan Atsushi Takemiya Eros Kharshiing Catherine Cloix Ken‐ichiro Shimazaki John M. Christie 《The Plant journal : for cell and molecular biology》2016,88(6):907-920
Phototropin (phot1) is a blue light‐activated plasma membrane‐associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non‐Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non‐invasive approach where PHOT1–GFP (P1–GFP) expression was targeted to the hypocotyl apex of the phot‐deficient mutant using the promoters of CUP‐SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1–GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1–GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 μmol m?2 sec?1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1–GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de‐phosphorylation showed that CUC3::P1–GFP and ANT::P1–GFP mis‐express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1‐mediated NPH3 de‐phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl. 相似文献
75.
76.
77.
Jiří Patoka André Lincoln Barroso Magalhães Antonín Kouba Zen Faulkes Rikho Jerikho Jean Ricardo Simões Vitule 《Biodiversity and Conservation》2018,27(11):3037-3046
Businesses in the pet trade collect and transport many aquatic species around the globe, and some of these individuals are released into new habitats. Some jurisdictions have introduced laws intended to regulate this trade, but these regulations have rarely had the desired effects. Laws regarding pets and the pet trade are often poorly communicated, poorly enforced, and not aligned with hobbyists’ beliefs. Consequently, some laws may increase the number of unwanted introductions instead of decreasing them. A significant change in approach is needed, involving far greater communication with scientists, administrations, politicians, the pet industry, and pet owners, promoting euthanasia of unwanted pets rather than release, and the creation and promotion “white lists” of low risk species that can be sold in the pet trade. 相似文献
78.
An improved synthesis of 11-oxoestrone-3-acetate-17-ethyleneketal is reported. Adjustments are proposed for the oxidation of estrone by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone into 9(11)-dehydroestrone. A complete hydroboration-oxidation of the resulting ketal, by means of borane-methylsulfide complex, gives the corresponding 11-hydroxy derivative. This latter compound is then acetylated for successful oxidation with pyridinium chlorochromate on alumina. The overall yield is 30%. 相似文献
79.
80.
Mohammad A. J. Bapary Jun‐ichiro Takano Shogo Soma Tadashi Sankai 《Cell biology international》2019,43(11):1296-1306
Light is an indispensable part of routine laboratory work in which conventional light is generally used. Light‐emitting diodes (LEDs) have come to replace conventional light, and thus could be a potent target in biomedical studies. Since blue light is a major component of visible light wavelength, in this study, using a somatic cell from the African green monkey kidney, we assessed the possible consequences of the blue spectra of LED light in future animal experiments and proposed a potent mitigation against light‐induced damage. COS‐7 cells were exposed to blue LED light (450 nm) and the growth and deoxyribonucleic acid (DNA) damage were assessed at different exposure times. A higher suppression in cell growth and viability was observed under a longer period of blue LED light exposure. The number of apoptotic cells increased as the light exposure time was prolonged. Reactive oxygen species (ROS) generation was also elevated in accordance to the extension of light exposure time. A comparison with dark‐maintained cells revealed that the upregulation of ROS by blue LED light plays a significant role in causing cellular dysfunction in DNA in a time‐dependent manner. In turn, antioxidant treatment has been shown to improve cell growth and viability under blue LED light conditions. This indicates that antioxidants have potential against blue LED light‐induced somatic cell damage. It is expected that this study will contribute to the understanding of the basic mechanism of somatic cell death under visible light and maximize the beneficial use of LED light in future animal experiments. 相似文献