首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
  70篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   8篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有70条查询结果,搜索用时 0 毫秒
11.
Objective: The purpose of this study was to investigate the impact of dietary calcium or dairy product intake on total energy expenditure (TEE), fat oxidation, and thermic effect of a meal (TEM) during a weight loss trial. Methods and Procedures: The intervention included a prescribed 500‐kcal deficit diet in a randomized placebo‐controlled calcium or dairy product intervention employing twenty‐four 18 to 31‐year‐old (22.2 ± 3.1 years, mean ± s.d.) overweight women (75.5 ± 9.6 kg). TEM and fat oxidation were measured using respiratory gas exchange after a meal challenge, and TEE was measured by doubly labeled water. Fat mass (FM) and lean mass (fat‐free mass (FFM)) were measured by dual‐energy X‐ray absorptiometry. Subjects were randomized into one of these three intervention groups: (i) placebo (<800 mg/day calcium intake); (ii) 900 mg/day calcium supplement; (iii) three servings of dairy products/day to achieve an additional 900 mg/day. Results: There were no group effects observed in change in TEE; however, a group effect was observed for fat oxidation after adjusting for FFM (P = 0.02). The treatment effect was due to an increase in fat oxidation in the calcium‐supplemented group of 1.5 ± 0.6 g/h, P = 0.02. Baseline 25‐hydroxyvitamin D (25OHD) was positively correlated with TEM (R = 0.31, P = 0.004), and trended toward a correlation with fat oxidation (P = 0.06), independent of group assignment. Finally, the change in log parathyroid hormone (PTH) was positively correlated with the change in trunk FM (R = 0.27, P = 0.03). Discussion: These results support that calcium intake increases fat oxidation, but does not change TEE and that adequate vitamin D status may enhance TEM and fat oxidation.  相似文献   
12.
Objective: Our objective was to determine the effects of dairy consumption on adiposity and body composition in obese African Americans. Research Methods and Procedures: We performed two randomized trials in obese African‐American adults. In the first (weight maintenance), 34 subjects were maintained on a low calcium (500 mg/d)/low dairy (<1 serving/d) or high dairy (1200 mg Ca/d diet including 3 servings of dairy) diet with no change in energy or macronutrient intake for 24 weeks. In the second trial (weight loss), 29 subjects were similarly randomized to the low or high dairy diets and placed on a caloric restriction regimen (?500 kcal/d). Results: In the first trial, body weight remained stable for both groups throughout the maintenance study. The high dairy diet resulted in decreases in total body fat (2.16 kg, p < 0.01), trunk fat (1.03 kg, p < 0.01), insulin (18.7 pM, p < 0.04), and blood pressure (6.8 mm Hg systolic, p < 0.01; 4.25 mm Hg diastolic, p < 0.01) and an increase in lean mass (1.08 kg, p < 0.04), whereas there were no significant changes in the low dairy group. In the second trial, although both diets produced significant weight and fat loss, weight and fat loss on the high dairy diet were ~2‐fold higher (p < 0.01), and loss of lean body mass was markedly reduced (p < 0.001) compared with the low dairy diet. Discussion: Substitution of calcium‐rich foods in isocaloric diets reduced adiposity and improved metabolic profiles in obese African Americans without energy restriction or weight loss and augmented weight and fat loss secondary to energy restriction.  相似文献   
13.
14.
We have cloned double stranded cDNA sequences encoding a mouse immunoglobulin light chain (L-321) into the PstI site of the beta-lactamase gene of plasmid pBR322 by the oligo (dG)-oligo (dC) tailing procedure. Escherichia coli X1776 transformed by the recombinant plasmids were screened for the expression of L-321 antigenic determinants by a newly developed in situ radio-immunoassay. One out of seven transformants screened was found to synthesize an L-chain like protein. Each bacterial cell produces about 550 molecules of the L-chain sequence. Preferential segregation of the L-chain sequence to the periplasmic space suggest covalent attachment of the L-chain sequence to the N-terminal portion of beta-lactamase. Restriction mapping of the plasmid DNA isolated from the positive clone indicated the presence of a DNA sequence coding for the entire constant region and extending into the variable region for a length corresponding to about 40 amino acid residues. The orientation of the cloned cDNA with respect to the plasmid DNA is compatible with the formation of a fused beta-lactamase-L-321 peptide.  相似文献   
15.

Objectives:

We tested the hypothesis that daily vitD3 supplementation increases neuromuscular motor skills, jump power, jump energy, muscular force, and muscular strength.

Methods:

This was a secondary analysis of a randomized controlled trial of 12-months of oral 7,000 IU/day vitD3 supplementation or placebo among 56 persons living with HIV aged 9-25 years. Neuromuscular motor skills were quantified using the Bruininks-Oseretsky Test of Motor Proficiency. Power was quantified using peak jump power, and energy was quantified using peak jump height. Muscular force was quantified using isometric ankle plantar- and dorsiflexion, isokinetic knee flexion and extension. Muscular strength was quantified using isometric handgrip strength.

Results:

After 12-months, serum 25-hydroxyvitamin D [25(OH)D] was higher with supplementation versus placebo (β=12.1 ng/mL; P<0.001). In intention-to-treat analyses, supplementation improved neuromuscular motor skills versus placebo (β=1.14; P=0.041). We observed no effect of supplementation on jump power, jump energy, muscular force, or muscular strength outcomes versus placebo.

Conclusions:

Among HIV-infected children and young adults supplementation with daily high-dose vitD3 increased concentration of serum 25(OH)D and improved neuromuscular motor skills versus placebo.  相似文献   
16.
17.
Objective: Increasing 1, 25‐dihydroxyvitamin D in response to low‐calcium diets stimulates adipocyte Ca2+ influx and, as a consequence, stimulates lipogenesis, suppresses lipolysis, and increases lipid accumulation, whereas increasing dietary calcium inhibits these effects and markedly accelerates fat loss in mice subjected to caloric restriction. Our objective was to determine the effects of increasing dietary calcium in the face of caloric restriction in humans. Research Methods and Procedures: We performed a randomized, placebo‐controlled trial in 32 obese adults. Patients were maintained for 24 weeks on balanced deficit diets (500 kcal/d deficit) and randomized to a standard diet (400 to 500 mg of dietary calcium/d supplemented with placebo), a high‐calcium diet (standard diet supplemented with 800 mg of calcium/d), or high‐dairy diet (1200 to 1300 mg of dietary calcium/d supplemented with placebo). Results: Patients assigned to the standard diet lost 6.4 ± 2.5% of their body weight, which was increased by 26% (to 8.6 ± 1.1%) on the high‐calcium diet and 70% (to 10.9 ± 1.6% of body weight) on the high‐dairy diet (p < 0.01). Fat loss was similarly augmented by the high‐calcium and high‐dairy diets, by 38% and 64%, respectively (p < 0.01). Moreover, fat loss from the trunk region represented 19.0 ± 7.9% of total fat loss on the low‐calcium diet, and this fraction was increased to 50.1 ± 6.4% and 66.2 ± 3.0% on the high‐calcium and high‐dairy diets, respectively (p < 0.001). Discussion: Increasing dietary calcium significantly augmented weight and fat loss secondary to caloric restriction and increased the percentage of fat lost from the trunk region, whereas dairy products exerted a substantially greater effect.  相似文献   
18.

Background

Toll-like receptors (TLRs) are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4) is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS) (septic shock model).

Methods

Wild type (WT), TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later.

Results

Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNFα) ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7) and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively) compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed.

Conclusions

These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.  相似文献   
19.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   
20.
Previous data from this laboratory demonstrate that increased intracellular Ca(2+) ([Ca(2+)]i) coordinately regulates human and murine adipocyte lipid metabolism by stimulating lipogenesis and inhibiting lipolysis. However, recent data demonstrate metabolic uncoupling increases [Ca(2+)]i but inhibits lipogenesis by suppressing fatty acid synthase (FAS) activity. Accordingly, we have evaluated the interaction between mitochondrial uncoupling, adipocyte [Ca(2+)]i, and adipocyte lipid metabolism. Pretreatment of 3T3-L1 cells with mitochondrial uncouplers (DNP or FCCP) amplified the [Ca(2+)]i response to depolarization with KCl by 2-4 fold (p <0.001), while this increase was prevented by [Ca(2+)]i channel antagonism with lanthanum. Mitochondrial uncouplers caused rapid (within 4hr) dose-dependent inhibition of FAS activity (p <0.001), while lanthanum caused a further additive inhibition. The suppression of FAS activity induced by uncoupling was reversed by addition of ATP. Mitochondrial uncouplers increased FAS expression significantly while [Ca(2+)]i antagonism with lanthanum decreased FAS expression (P <0.001). In contrast, mitochondrial uncouplers independently inhibited basal and isoproterenol-stimulated lipolysis (20-40%, p <0.001), while this inhibition was fully reversed by lanthanum. Thus, mitochondrial uncoupling exerted short-term regulatory effects on adipocyte [Ca(2+)]i and lipogenic and lipolytic systems, serving to suppress lipolysis via a Ca(2+) -dependent mechanism and FAS activity via a Ca(2+)-independent mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号