首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   21篇
  304篇
  2024年   1篇
  2023年   6篇
  2022年   17篇
  2021年   17篇
  2020年   17篇
  2019年   27篇
  2018年   23篇
  2017年   15篇
  2016年   10篇
  2015年   12篇
  2014年   22篇
  2013年   34篇
  2012年   15篇
  2011年   16篇
  2010年   7篇
  2009年   5篇
  2008年   12篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有304条查询结果,搜索用时 0 毫秒
71.
Virus‐like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co‐administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 113–132, 2016.  相似文献   
72.
Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival.  相似文献   
73.
An enzymatic reaction using glucose oxidase (GOx) was applied for continues production of hydrogen peroxide and organic acid in Phanerochaete chrysosporium cultures for use simultaneously in catalytic cycle of peroxidases. Decolorization efficiency of crystal violet (CV) as a model pollutant was investigated in 16 d old cultures which overproduced manganese peroxidase (MnP) in response to daily GOx addition and control cultures (i.e. no GOx was added). However, the ability of overproduced cultures in decolorization of CV was not increased significantly, through addition of GOx (300?U/L)?+?glucose (10?Mm) to the culture medium at the start of decolorization, the time needed to obtain 87?±?0.5% removal of CV was reduced 10.7-fold in compared with the control culture. The best GOx concentration in culture medium for more efficient decolorization was obtained to be 300?U/L. These findings indicated that GOx in the presence of glucose could increase the degradation of CV not only by inducing ligninolytic activity in cultures but also as a subsidiary source for in situ H2O2 and organic acid production for catalytic activity of peroxidases in P. chrysosporium cultures.  相似文献   
74.
Background:MicroRNA expression signature and reactive oxygen species (ROS) production have been associated with the development of cardiovascular diseases (CVDs). This study aimed to evaluate oxidative stress, inflammation, apoptosis, and the expression of miRNA-208a and miRNA-1 in cardiovascular patients.Methods:The study population included four types of patients (acute coronary syndromes (ACS), myocardial infarction (MI), arrhythmia, and heart failure (HF)), with 10 people in each group, as well as a control group. Quantitative real-time PCR was performed to measure mir-208 and miR-1 expression, the mRNAs of inflammatory mediators (TNFα, iNOS/eNOS), and apoptotic factors (Bax and Bcl2). XOX, MDA, and antioxidant enzymes (CAT, SOD, and GPx) were measured by ZellBio GmbH kits by an ELISA Reader.Results:The results showed significant decreases in the activity of antioxidant enzymes (CAT, SOD, and Gpx) and a significant increase in the activity of the MDA and XOX in cardiovascular patients. Significant increases in IL-10, iNos, iNOS / eNOS, and TNF-α in cardiovascular patients were also observed. Also, a significant increase in the expression of miR-208 (HF> arrhythmia> ACS> MI) and a significant decrease in the expression of miR-1 (ACS> arrhythmia> HF> MI) were found in all four groups in cardiovascular patients.Conclusion:The results showed increases in oxidative stress, inflammation, apoptotic factors, and in the expression of miR-208a in a variety of cardiovascular patients (ACS, MI, arrhythmia, and HF). It is suggested that future studies determine the relationships that miR-1, miR-208, and oxidative stress indices have with inflammation and apoptosis.Key Words: Apoptosis, Cardiovascular diseases, Inflammation, microRNA-208a, microRNA-1, Oxidative stress  相似文献   
75.
Macrophages detect bacterial infection through pattern recognition receptors (PRRs) localized at the cell surface, in intracellular vesicles or in the cytosol. Discrimination of viable and virulent bacteria from non-virulent bacteria (dead or viable) is necessary to appropriately scale the anti-bacterial immune response. Such scaling of anti-bacterial immunity is necessary to control the infection, but also to avoid immunopathology or bacterial persistence. PRR-mediated detection of bacterial constituents in the cytosol rather than at the cell surface along with cytosolic recognition of secreted bacterial nucleic acids indicates viability and virulence of infecting bacteria. The effector responses triggered by activation of cytosolic PRRs, in particular the RIG-I-induced simultaneous rapid type I IFN induction and inflammasome activation, are crucial for timely control of bacterial infection by innate and adaptive immunity. The knowledge on the PRRs and the effector responses relevant for control of infection with intracellular bacteria will help to develop strategies to overcome chronic infection.  相似文献   
76.

In this paper, we demonstrate a novel salinity sensor based on Tamm-plasmon-polariton (TPP), comprising different shapes of Bragg reflector (ordinary, texturing, and sawtooth) and metallic layer. The finite element method is used to study the considered structure and sensing performance by using the COMSOL multiphysics simulation procedure. Here, we study the effect of surface morphology on the sensitivity; firstly, in the case of one-dimensional photonic crystal-centered defect, it harms the sensitivity; secondly, texturing and sawtooth in the case of Tamm resonance increases the sensitivity, as for texturing the surface, the sensitivity quality factor (Q)?=?236 and figure of merit (FOM)?=?170. For sawtooth surfaces, Q?=?272.4, and FOM?=?199. The consequences of structural parameters on the efficiency of sensing are studied, and new procedures are proposed to enhance TPP-based sensors. A simple and functional alternative to conventional salinity sensors may be the proposed solution.

  相似文献   
77.
Mammalian Genome - Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are...  相似文献   
78.
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can fix N(2) when combined nitrogen is not available in the growth medium. It has a family of 13 genes encoding proteins with both a Ser/Thr kinase domain and a His kinase domain. The function of these enzymes is unknown. Two of them are encoded by pkn41 (alr0709) and pkn42 (alr0710). These two genes are separated by only 72 bp on the chromosome, and our results indicate that they are cotranscribed. The expression of pkn41 and pkn42 is induced by iron deprivation irrespective of the nature of the nitrogen source. Mutants inactivating either pkn41, pkn42, or both grow similarly to the wild type under normal conditions, but their growth is impaired either in the presence of an iron chelator or under conditions of nitrogen fixation and iron limitation, two situations where the demand for iron is particularly strong. Consistent with these results, these mutants display lower iron content than the wild type and a higher level of expression for nifJ1 and nifJ2, which encode pyruvate:ferredoxin oxidoreductases. Both nifJ1 and nifJ2 are known to be induced by iron limitation. NtcA, a global regulatory factor for different metabolic pathways, binds to the putative promoter region of pkn41, and the induction of pkn41 in response to iron limitation no longer occurs in an ntcA mutant. Our results suggest that ntcA not only regulates the expression of genes involved in nitrogen and carbon metabolism but also coordinates iron acquisition and nitrogen metabolism by activating the expression of pkn41 and pkn42.  相似文献   
79.
A group of 4-allyloxyaniline amides 5ao were designed, synthesized and evaluated as potential inhibitors of soybean 15-lipoxygenase (SLO) on the basis of eugenol and esteragol structures. Compound 5e showed the best IC50 in SLO inhibition (IC50 = 0.67 ± 0.06 μM). All compounds were docked in SLO active site retrieved from RCSB Protein Data Bank (PDB entry: 1IK3) and showed that allyloxy group of compounds is oriented towards the Fe3+-OH moiety in the active site of enzyme and fixed by hydrogen bonding with two conserved His513 and Gln716. It is resulted that molecular volume of the amide moiety would be a major factor in inhibitory potency variation of the synthetic amides, where the hydrogen bonding of the amide group could also involve in the activity of the inhibitors.  相似文献   
80.
Cell therapy and tissue repair are used in a variety of diseases including tissue and organ transplantation, autoimmune diseases and cancers. Now mesenchymal stem cells (MSCs) are an attractive and promising source for cell-based therapy according to their individual characteristics. Soluble factors which are able to induce MSCs migration have a vital role in cell engraftment and tissue regeneration. Tumor necrosis factor α (TNF-α) is a major cytokine present in damaged tissues. We have investigated the pattern of gene expression of chemokine receptor CXCR4 in nine groups of human bone marrow-derived MSCs stimulated with TNF-α in different dose and time manner. Comparison of TNF-α treated with untreated MSCs revealed the highest expression level of CXCR4 after treatment with 1, and 10 ng/ml of TNF-α in 24 h, and the production of CXCR4 mRNA was regulated up to 216 and 512 fold, respectively. Our results demonstrated the differential gene expression pattern of chemokine receptor CXCR4 in human marrow-derived MSCs stimulated with inflammatory cytokine TNF-α. These findings suggest that in vitro control of both dose and time factors may be important in stem cell migration capacity, and perhaps in future-stem cell transplantation therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号