首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   15篇
  国内免费   1篇
  240篇
  2024年   1篇
  2023年   5篇
  2022年   17篇
  2021年   12篇
  2020年   17篇
  2019年   27篇
  2018年   21篇
  2017年   13篇
  2016年   7篇
  2015年   11篇
  2014年   17篇
  2013年   27篇
  2012年   10篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1988年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
201.
The LINC complex is found in a wide variety of organisms and is formed by the transluminal interaction between outer- and inner-nuclear-membrane KASH and SUN proteins, respectively. Most extensively studied are SUN1 and SUN2 proteins, which are widely expressed in mammals. Although SUN1 and SUN2 play functionally redundant roles in several cellular processes, more recent studies have revealed diverse and distinct functions for SUN1. While several recent in vitro structural studies have revealed the molecular details of various fragments of SUN2, no such structural information is available for SUN1. Herein, we conduct a systematic analysis of the molecular relationships between SUN1 and SUN2, highlighting key similarities and differences that could lead to clues into their distinct functions. We use a wide range of computational tools, including multiple sequence alignments, homology modeling, molecular docking, and molecular dynamic simulations, to predict structural differences between SUN1 and SUN2, with the goal of understanding the molecular mechanisms underlying SUN1 oligomerization in the nuclear envelope. Our simulations suggest that the structural model of SUN1 is stable in a trimeric state and that SUN1 trimers can associate through their SUN domains to form lateral complexes. We also ask whether SUN1 could adopt an inactive monomeric conformation as seen in SUN2. Our results imply that the KASH binding domain of SUN1 is also inhibited in monomeric SUN1 but through weaker interactions than in monomeric SUN2.  相似文献   
202.
203.
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.  相似文献   
204.
205.
Short peptides derived from virulent pathogen proteins are promising antigens for the development of vaccines against infectious diseases. However, in order to mimic the danger signals associated with natural infection and stimulate an adaptive immune response, peptide antigens must be co-delivered with immune adjuvants. In this study, a group A streptococcus (GAS) M-protein derived B-cell epitope: J8, and universal T-helper epitope P25 containing peptides, were chemically coupled with different anionic amino acid-based polymers. The poly(anionic amino acid)-peptide antigen conjugates were mixed with trimethyl chitosan (TMC) to produce self-adjuvanting nanoparticulate vaccine candidates. TMC from two different sources were used to analyse their effect on immunogenicity. The nanoparticles produced from a peptide modified with 10 residues of polyglutamic acid and fungal TMC (NP5) stimulated production of the highest levels of serum antibodies in outbred mice. These antibodies were opsonic against all clinical GAS isolates tested.  相似文献   
206.
Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.

A comprehensive study reveals that kinesins in the malaria parasite Plasmodium have diverse cellular roles and locations, including functions in spindle assembly during proliferation, axoneme formation in flagellum biogenesis, and determining the apical morphology of the cell.  相似文献   
207.
Abstract

The binding of small molecules with histone-DNA complexes can cause an interference in vital cellular processes such as cell division and the growth of cancerous cells that results in apoptosis. It is significant to study the interaction of small molecules with histone-DNA complex for the purpose of better understanding their mechanism of action, as well as designing novel and more effective drug compounds. The fluorescence quenching of ct-DNA upon interaction with Berberine has determined the binding of Berberine to ct-DNA with Ksv?=?9.46?×?107 M?1. Ksv value of ct-DNA-Berberine in the presence of H1 has been observed to be 3.10?×?107 M?1, indicating that the H1 has caused a reduction in the binding affinity of Berberine to ct-DNA. In the competitive emission spectrum, ethidium bromide (EB) and acridine orange (AO) have been examined as intercalators through the addition of Berberine to ct-DNA complexes, which includes ctDNA-EB and ctDNA-AO. Although in the presence of histone H1 , we have observed signs of competition through the induced changes within the emission spectra, yet there has been apparently no competition between the ligands and probes. The viscosity results have confirmed the different behaviors of interaction between ctDNA and Berberine throughout the binary and ternary systems. We have figured out the IC50 and viability percent values at three different time durations of interaction between Berberine and MCF7 cell line. The molecular experiments have been completed by achieving the results of MTT assay, which have been confirmed to be in good agreement with molecular modeling studies.

Communicated by Ramaswamy H. Sarma  相似文献   
208.
The assessment of population structure and genetic diversity is crucial for the management and conservation of threatened species. Natural and artificial barriers to dispersal (i.e., gene flow) increase populations’ differentiation and isolation by reducing genetic exchange and diversity. Freshwater ecosystems are highly fragmented because of human activities. Threatened species with small population sizes are more sensitive to habitat fragmentation effects. Here, we investigate the genetic population structure and gene flow among seven populations of Aphanius sophiae in the Kor Basin by using sequences of the complete Cyt b gene and otolith morphometry. The Cyt b gene showed low level of genetic variation, only 4.12% of the identified sites were variable, and 2.42% were parsimony informative. Overall, haplotype diversity was low to moderate and nucleotide diversity was low to extremely low. Fish populations exhibited high levels of genetic differentiation, suggesting limited gene flow among them. These differences were obtained not only among geographically distant populations, but also among neighboring localities. Genetic population structure was supported by the AMOVA analysis and by the haplotype network (only one of 21 haplotypes were shared by two localities). Otolith morphometric analysis was in agreement with genetic results, the two most distant and isolated populations were clearly separated, and genetically close populations showed less differences in morphometry. A significant pattern of isolation by distance was also detected among A. sophiae populations, with genetic distance more correlated with hydrological distance than with geographic distance. Results suggested that limited gene flow due to habitat fragmentation is an important factor contributing to genetic structuring and to the loss of genetic variation of A. sophiae populations. Aphanius sophiae population structure seems to be the result of habitat fragmentation and water pollution, but other factors such as introduced species should be considered. Given the high degree of genetic structuring, the definition of conservation groups is of particular importance for A. sophiae, which should be considered endangered according to the IUCN criteria. Conservation plans must recognize the genetic independence of populations and manage separately preventing the loss of locally adapted genotypes.  相似文献   
209.
A group of 4-methoxyphenylacetic acid esters were designed, synthesized and evaluated as potential inhibitors of soybean 15-lipoxygenase (SLO) on the basis of eugenol and esteragol structures. Compounds 7de showed the best IC50 in SLO inhibition (IC50 = 3.8 and 1.9 μM, respectively). All compounds were docked in SLO active site and showed that carbonyl group of compounds is oriented toward the FeIII–OH moiety in the active site of enzyme and fixed by hydrogen bonding with hydroxyl group. It is assumed that lipophilic interaction of ligand–enzyme would be in charge of inhibiting the enzyme activity. The selectivity of the synthetic esters in inhibiting of 15-HLOb was also compared with 15-HLOa by molecular modeling and multiple alignment techniques.  相似文献   
210.
Shiga toxin B-subunit (STxB) from Shigella dysenteriae targets in vivo antigen to cancer cells, dendritic cells (DC) and B cells, which preferentially express the globotriaosylceramide (Gb3) receptor. This pivotal role has encouraged scientists to investigate fusing STxB with other clinical antigens. Due to the challenges of obtaining a functional soluble form of the recombinant STxB, such as formation of inclusion bodies during protein expression, scientists tend to combine STxB with vaccine candidates rather than using their genetically fused forms. In this work, we fused HPV16 E7 as a vaccine candidate to the recombinantly-produced STxB. To minimize the formation of inclusion bodies, we investigated a number of conditions during the expression procedure. Then various strategies were used in order to obtain high yield of soluble recombinant protein from E. coli which included the use of different host strains, reduction of cultivation temperature, as well as using different concentrations of IPTG and different additives (Glycin, Triton X-100, ZnCl2). Our study demonstrated the importance of optimizing incubation parameters for recombinant protein expression in E. coli; also showed that the secretion production can be achieved over the course of a few hours when using additives such as glycine and Triton X-100. Interestingly, it was shown that when the culture mediums were supplemented by additives, there was an inverse ratio between time of induction (TOI) and the level of secreted protein at lower temperatures. This study determines the optimal conditions for high yield soluble E7-STxB expression and subsequently facilitates reaching a functionally soluble form of STxB-based vaccines, which can be considered as a potent vaccine candidate for cervical cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号