首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72950篇
  免费   18328篇
  国内免费   3724篇
  2024年   92篇
  2023年   540篇
  2022年   1356篇
  2021年   2643篇
  2020年   3549篇
  2019年   5429篇
  2018年   5601篇
  2017年   5560篇
  2016年   6103篇
  2015年   6351篇
  2014年   6732篇
  2013年   7463篇
  2012年   5737篇
  2011年   5165篇
  2010年   5552篇
  2009年   4015篇
  2008年   3336篇
  2007年   2641篇
  2006年   2332篇
  2005年   2021篇
  2004年   1884篇
  2003年   1794篇
  2002年   1505篇
  2001年   1278篇
  2000年   1035篇
  1999年   761篇
  1998年   402篇
  1997年   343篇
  1996年   321篇
  1995年   333篇
  1994年   308篇
  1993年   234篇
  1992年   304篇
  1991年   264篇
  1990年   213篇
  1989年   196篇
  1988年   134篇
  1987年   180篇
  1986年   147篇
  1985年   129篇
  1984年   102篇
  1983年   97篇
  1982年   84篇
  1981年   79篇
  1980年   52篇
  1979年   63篇
  1978年   66篇
  1976年   52篇
  1973年   64篇
  1972年   54篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
Abnormal mitochondrial fission and mitophagy participate in the pathogenesis of many cardiovascular diseases. Baicalein is a key active component in the roots of traditional Chinese medicinal herb Scutellaria baicalensis Georgi. It has been reported that baicalein can resist cardiotoxicity induced by several stress, but the mechanisms of baicalein operate in the protection of cardiomyocytes need to be researched further. Here we report that baicalein can promote cell survival under oxidative stress by up‐regulating the expression level of MARCH5 in cardiomyocytes. Pre‐treatment cells or mice with baicalein can stabilize the expression of MARCH5, which plays a crucial role in the regulation of mitochondrial network and mitophagy. Overexpressed MARCH5 is able to against H2O2 and ischaemia/reperfusion (I/R) stress by suppressing mitochondrial fission and enhancing mitophagy, and then attenuate cells apoptosis. Altogether, our present study investigated that baicalein exerts a protective effect through regulating KLF4‐MARCH5‐Drp1 pathway, our research also provided a novel theoretical basis for the clinical application of baicalein.  相似文献   
942.
Evidence demonstrates that M1 macrophage polarization promotes inflammatory disease. Here, we discovered that (R)‐salbutamol, a β2 receptor agonist, inhibits and reprograms the cellular metabolism of RAW264.7 macrophages. (R)‐salbutamol significantly inhibited LPS‐induced M1 macrophage polarization and downregulated expressions of typical M1 macrophage cytokines, including monocyte chemotactic protein‐1 (MCP‐1), interleukin‐1β (IL‐1β) and tumour necrosis factor α (TNF‐α). Also, (R)‐salbutamol significantly decreased the production of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and reactive oxygen species (ROS), while increasing the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. In contrast, (S)‐salbutamol increased the production of NO and ROS. Bioenergetic profiles showed that (R)‐salbutamol significantly reduced aerobic glycolysis and enhanced mitochondrial respiration. Untargeted metabolomics analysis demonstrated that (R)‐salbutamol modulated metabolic pathways, of which three metabolic pathways, namely, (a) phenylalanine metabolism, (b) the pentose phosphate pathway and (c) glycerophospholipid metabolism were the most noticeably impacted pathways. The effects of (R)‐salbutamol on M1 polarization were inhibited by a specific β2 receptor antagonist, ICI‐118551. These findings demonstrated that (R)‐salbutamol inhibits the M1 phenotype by downregulating aerobic glycolysis and glycerophospholipid metabolism, which may propose (R)‐salbutamol as the major pharmacologically active component of racemic salbutamol for the treatment of inflammatory diseases and highlight the medicinal value of (R)‐salbutamol.  相似文献   
943.
WW domain binding protein 1‐like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6‐RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non‐haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4‐family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l‐deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.  相似文献   
944.
Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are required to limit immune‐induced pathology and to maintain homeostasis during the early‐phase of sepsis. This study aimed to investigate the role of interleukin (IL)‐38, a newly described member of the IL‐1 cytokine family, in mediated immune response of CD4+CD25+ Tregs in sepsis. Here, we provide evidence that expressions of IL‐38 and its receptor were detected in murine CD4+CD25+ Tregs. Stimulation of CD4+CD25+ Tregs with LPS markedly up‐regulated the expression of IL‐38. Treatment with rmIL‐38 dramatically enhanced the immunosuppressive activity of CD4+CD25+ Tregs after LPS stimulation and in septic mice induced by CLP, resulting in amplification of helper T cell (Th) 2 response and reduction in the proliferation of effector T cells. These effects were robustly abrogated when anti–IL‐38 antibody was administered. Administration of rmIL‐38 improved the survival rate of CLP mice. In addition, CD4+CD25+ Tregs depletion before the onset of sepsis obviously abolished IL‐38–mediated protective response. These findings suggest that IL‐38 enhances the immunosuppressive activity of CD4+CD25+ Tregs, which might contribute to the improvement of host immune function and prognosis in the setting of sepsis.  相似文献   
945.
In recent years, plenty of studies found that circular RNAs (circRNAs) were essential players in the initiation and progression of various cancers including the renal cell carcinoma (RCC). However, the knowledge about the circRNAs in carcinogenesis is still limited. Dysregulated expression of circNUP98 in RCC tissues was identified by the circular RNA microarray. RT‐PCR was performed to measure the expression of circNUP98 in 78 pairs of RCC tissues and adjacent normal tissues. Survival analysis was conducted to explore the association between the expression of circNUP98 and the prognosis of RCC. The function and underlying mechanisms of circSMC3 in RCC cells were investigated by RNAi, CCK‐8, Western blotting, bioinformatic analysis, ChIP assay, circRIP assay and dual luciferase reporter assay. CircNUP98 was up‐regulated in both RCC tissues and cell lines, and high expression of circNUP98 was correlated with poor prognosis of RCC patients. Silencing of circSMC3 inhibited the proliferation and promoted the apoptosis in a caspase‐dependent manner in RCC cells. Mechanistically, we revealed that silencing of circ NUP98 inhibited RCC progression by down‐regulating of PRDX3 via up‐regulation of miR‐567. Furthermore, STAT3 was identified as an inducer of circ NUP98 in RCC cells. CircNUP98 acts as an oncogene by a novel STAT3/circ NUP98/miR‐567/PRDX3 axis, which may provide a potential biomarker and therapeutic target for the treatment of RCC.  相似文献   
946.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   
947.
The current study was designed to explore the role and underlying mechanism of lncRNA taurine up-regulated gene 1 (TUG1) in cardiac hypertrophy. Mice were treated by transverse aortic constriction (TAC) surgery to induce cardiac hypertrophy, and cardiomyocytes were treated by phenylephrine (PE) to induce hypertrophic phenotype. Haematoxylin-eosin (HE), wheat germ agglutinin (WGA) and immunofluorescence (IF) were used to examine morphological alterations. Real-time PCR, Western blots and IF staining were used to detect the expression of RNAs and proteins. Luciferase assay and RNA pull-down assay were used to verify the interaction. It is revealed that TUG1 was up-regulated in the hearts of mice treated by TAC surgery and in PE-induced cardiomyocytes. Functionally, overexpression of TUG1 alleviated cardiac hypertrophy both in vivo and in vitro. Mechanically, TUG1 sponged and sequestered miR-34a to increase the Dickkopf 1 (DKK1) level, which eventually inhibited the activation of Wnt/β-catenin signalling. In conclusion, the current study reported the protective role and regulatory mechanism of TUG1 in cardiac hypertrophy and suggested that TUG1 may serve as a novel molecular target for treating cardiac hypertrophy.  相似文献   
948.
Atrial fibrosis is an important factor in the initiation and maintenance of atrial fibrillation (AF); therefore, understanding the pathogenesis of atrial fibrosis may reveal promising therapeutic targets for AF. In this study, we successfully established a rapid atrial pacing canine model and found that the inducibility and duration of AF were significantly reduced by the overexpression of c‐Ski, suggesting that this approach may have therapeutic effects. c‐Ski was found to be down‐regulated in the atrial tissues of the rapid atrial pacing canine model. We artificially up‐regulated c‐Ski expression with a c‐Ski–overexpressing adenovirus. Haematoxylin and eosin, Masson's trichrome and picrosirius red staining showed that c‐Ski overexpression alleviated atrial fibrosis. Furthermore, we found that the expression levels of collagen III and α‐SMA were higher in the groups of dogs subjected to right‐atrial pacing, and this increase was attenuated by c‐Ski overexpression. In addition, c‐Ski overexpression decreased the phosphorylation of smad2, smad3 and p38 MAPK (p38α and p38β) as well as the expression of TGF‐β1 in atrial tissues, as shown by a comparison of the right‐atrial pacing + c‐Ski‐overexpression group to the control group with right‐atrial pacing only. These results suggest that c‐Ski overexpression improves atrial remodelling in a rapid atrial pacing canine model by suppressing TGF‐β1–Smad signalling and p38 MAPK activation.  相似文献   
949.
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.  相似文献   
950.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号