首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   10篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   11篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   8篇
  2005年   14篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  1999年   5篇
  1997年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1985年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1975年   2篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
41.
Infection with avirulent pathogens, tobacco mosaic virus (TMV) or Pseudomonas syringae pv. tabaci induced accumulation of polyisoprenoid alcohols, solanesol and a family of polyprenols [from polyprenol composed of 14 isoprene units (Pren-14) to -18, with Pren-16 dominating] in the leaves of resistant tobacco plants Nicotiana tabacum cv. Samsun NN. Upon TMV infection, solanesol content was increased seven- and eight-fold in the inoculated and upper leaves, respectively, while polyprenol content was increased 2.5- and 2-fold in the inoculated and upper leaves, respectively, on the seventh day post-infection. Accumulation of polyisoprenoid alcohols was also stimulated by exogenously applied hydrogen peroxide but not by exogenous salicylic acid (SA). On the contrary, neither inoculation of the leaves of susceptible tobacco plants nor wounding of tobacco leaves caused an increase in polyisoprenoid content. Taken together, these results indicate that polyisoprenoid alcohols might be involved in plant resistance against pathogens. A putative role of accumulated polyisoprenoids in plant response to pathogen attack is discussed. Similarly, the content of plastoquinone (PQ) was increased two-fold in TMV-inoculated and upper leaves of resistant plants. Accumulation of PQ was also stimulated by hydrogen peroxide, bacteria ( P.  syringae ) and SA. The role of PQ in antioxidant defense in cellular membranous compartments is discussed in the context of the enzymatic antioxidant machinery activated in tobacco leaves subjected to viral infection. Elevated activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, glutathione reductase and superoxide dismutase, especially the CuZn superoxide dismutase isoform) and high, but transient elevation of catalase was found in inoculated leaves of resistant tobacco plants but not in susceptible plants.  相似文献   
42.
Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14α-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4′-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzyme and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.  相似文献   
43.
We utilized plasmon-waveguide resonance (PWR) spectroscopy to follow the effects of sphingomyelin, cholesterol and zinc ions on the binding and aggregation of the amyloid beta peptide(1-40) in lipid bilayers. With a dioleoylphosphatidylcholine (DOPC) bilayer, peptide binding was observed, but no aggregation occurred over a period of 15 h. In contrast, similar binding was found with a brain sphingomyelin (SM) bilayer, but in this case an exponential aggregation process was observed during the same time interval. When the SM bilayer included 35% cholesterol, an increase of approximately 2.5-fold occurred in the amount of peptide bound, with a similar increase in the extent of aggregation, the latter resulting in decreases in the bilayer packing density and displacement of lipid. Peptide association with a bilayer formed from equimolar amounts of DOPC, SM and cholesterol was followed using a high-resolution PWR sensor that allowed microdomains to be observed. Biphasic binding to both domains occurred, but predominantly to the SM-rich domain, initially to the surface and at higher peptide concentrations within the interior of the bilayer. Again, aggregation was observed and occurred within both microdomains, resulting in lipid displacement. We attribute the aggregation in the DOPC-enriched domain to be a consequence of lipid mixing within these microdomains, resulting in the presence of small amounts of SM and cholesterol in the DOPC microdomain. When 1 mM zinc was present, an increase of approximately threefold in the amount of peptide association was observed, as well as large changes in mass and bilayer structure as a consequence of peptide aggregation, occurring without loss of bilayer integrity. A structural interpretation of peptide interaction with the bilayer is presented based on the results of simulation analysis of the PWR spectra.  相似文献   
44.
A better understanding of signal transduction mechanisms is of critical importance. Methodologies that allow studies to be done while receptors are incorporated into lipid bilayers are advantageous. One such technique is plasmon-waveguide resonance (PWR) spectroscopy, which can follow changes in conformation accompanying protein-ligand, protein-protein, and protein-lipid interactions occurring in G-protein-coupled receptors in real time with high sensitivity and without the need for molecular labeling. Here we investigated several aspects of human delta-opioid receptor (hDOR)-G-protein interactions: 1) the effect of different types of agonists on the interaction with individual G-protein subtypes; 2) the affinities of the separate G-protein alpha and betagamma subunits to different ligand-occupied states of the receptor; and 3) the effect of the presence of the G-protein on the interactions of the ligand with the receptor. To accomplish this we have incorporated the receptor into a solid supported lipid bilayer in the presence of ligand or G-protein and monitored the PWR spectral changes induced by the reciprocal G-protein or ligand interactions. We found a high degree of selectivity in the interactions of different agonist-bound states of the receptor with the different G-protein subtypes. This has important implications for agonist-directed trafficking and selective drug design. Studies with the separated alpha and betagamma subunits show that cooperativity exists in these interactions. The high affinities of the separated subunits to the receptor point to the possibility of independent promotion of specific signaling events. The presence of G-proteins increased the affinity of agonists to the hDOR, and caused faster binding kinetics and different ligand-induced conformational changes. Because ligand also influences G-protein binding, reciprocity exists between these two binding processes.  相似文献   
45.
Plasmon-waveguide resonance (PWR) spectroscopy is an optical technique that can be used to probe the molecular interactions occurring within anisotropic proteolipid membranes in real time without requiring molecular labeling. This method directly monitors mass density, conformation, and molecular orientation changes occurring in such systems and allows determination of protein-ligand binding constants and binding kinetics. In the present study, PWR has been used to monitor the incorporation of the human beta(2)-adrenergic receptor into a solid-supported egg phosphatidylcholine lipid bilayer and to follow the binding of full agonists (isoproterenol, epinephrine), a partial agonist (dobutamine), an antagonist (alprenolol), and an inverse agonist (ICI-118,551) to the receptor. The combination of differences in binding kinetics and the PWR spectral changes point to the occurrence of multiple conformations that are characteristic of the type of ligand, reflecting differences in the receptor structural states produced by the binding process. These results provide new evidence for the conformational heterogeneity of the liganded states formed by the beta(2)-adrenergic receptor.  相似文献   
46.
The interaction between the cell-penetrating peptide, penetratin, and solid-supported lipid bilayer membranes consisting of either egg phosphatidylcholine (PC) or a 75/25 mol% mixture of egg PC and palmitoyloleylphosphatidylglycerol has been studied by simultaneously measuring plasmon-waveguide resonance (PWR) spectra and impedance spectra of lipid-peptide mixtures. When penetratin was incorporated into an egg PC + palmitoyloleylphosphatidylglycerol bilayer, PWR measurements showed a hyperbolic increase in the average refractive index and the refractive index anisotropy, with no change in membrane thickness, over a concentration range between 0 and 2 micro M peptide. In the case of an egg PC bilayer, a biphasic dependence was observed, with a decrease in average refractive index and anisotropy and no thickness change occurring between 0 and 5 micro M peptide, and an increase in membrane thickness occurring between 5 and 15 micro M peptide with no further change in the refractive index parameters. For both membranes, the impedance spectroscopy measurements demonstrated that the electrical resistance was not altered by peptide incorporation, whereas a decrease in membrane capacitance occurred with the same concentration dependence as observed in the PWR experiments, although for the PC membrane no further changes in electrical properties were observed in the higher concentration range. A structural interpretation of these results is described, in which the peptide binds electrostatically within the headgroup region of the bilayer and influences the headgroup conformation, amount of bound water, and the lipid-packing density, without perturbing the hydrocarbon core of the bilayer.  相似文献   
47.
Tollin G  Salamon Z  Cowell S  Hruby VJ 《Life sciences》2003,73(26):3307-3311
Plasmon-waveguide resonance (PWR) spectroscopy provides a highly sensitive method for characterizing the kinetics, affinities and conformational changes involved in ligand binding to G-protein coupled receptors, without the need for radioactive or other labeling strategies. In the case of the cloned delta-opioid receptor from human brain incorporated into a lipid bilayer, we have shown that affinities determined in this way are consistent with those measured by standard binding procedures using membranes or whole cells containing the receptors, and that the spectral and kinetic properties of the binding processes allow facile distinction between agonist, inverse agonist, and antagonist ligands. We have also shown by direct measurements that G-protein binding affinities and the ability to undergo GTP/GDP exchange are dependent upon the type of ligand pre-bound to the receptor. PWR spectroscopy thus provides a powerful new approach to investigating signal transduction in biological membrane systems.  相似文献   
48.
Summary A semi-rigid structural analog of [Leu5] enkephalin, possessing the azo-bridge between Tyr1 and Phe4 residues, was synthesized, along with two other linear enkephalin analogs: [4′-amino Phe4] enkephalin and [4′hydroxyphenyl/-azo Phe4] enkephalin. The results of the determination of the analgesic activity of the synthesized compounds suggest that the biologically active conformation of the enkephalin molecule should be such that both aromatic rings, Tyr1 and Phe4, are situated in close proximity.  相似文献   
49.
Previous studies in our laboratory have established ceramide kinase (CERK) as a critical mediator of eicosanoid synthesis. To date, CERK has not been well characterized in vitro. In this study, we investigated the substrate specificity of CERK using baculovirus-expressed human CERK (6 x His) and a newly designed assay based on mixed micelles of Triton X-100. The results indicate that the ability of CERK to recognize ceramide as a substrate is stereospecific. A minimum of a 12 carbon acyl chain was required for normal CERK activity, and the 4-5 trans double bond was important for substrate recognition. A significant discrimination by CERK was not observed between ceramides with long saturated and long unsaturated fatty acyl chains. Methylation of the primary hydroxyl group resulted in a loss of activity, confirming that CERK produces ceramide-1-phosphate versus ceramide-3-phosphate. In addition, methylation of the secondary hydroxyl group drastically decreased the phosphorylation by CERK. These results also indicated that the free hydrogen of the secondary amide group is critical for substrate recognition. Lastly, the sphingoid chain was also required for substrate recognition by CERK. Together, these results indicate a very high specificity for substrate recognition by CERK, explaining the use of ceramide and not sphingosine or diacylglycerol as substrates.  相似文献   
50.
The observation of light metal ions in nucleic acids crystals is generally a fortuitous event. Sodium ions in particular are notoriously difficult to detect because their X-ray scattering contributions are virtually identical to those of water and Na+…O distances are only slightly shorter than strong hydrogen bonds between well-ordered water molecules. We demonstrate here that replacement of Na+ by K+, Rb+ or Cs+ and precise measurements of anomalous differences in intensities provide a particularly sensitive method for detecting alkali metal ion-binding sites in nucleic acid crystals. Not only can alkali metal ions be readily located in such structures, but the presence of Rb+ or Cs+ also allows structure determination by the single wavelength anomalous diffraction technique. Besides allowing identification of high occupancy binding sites, the combination of high resolution and anomalous diffraction data established here can also pinpoint binding sites that feature only partial occupancy. Conversely, high resolution of the data alone does not necessarily allow differentiation between water and partially ordered metal ions, as demonstrated with the crystal structure of a DNA duplex determined to a resolution of 0.6 Å.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号