首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   9篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2013年   8篇
  2012年   8篇
  2011年   7篇
  2010年   11篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   10篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1985年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1975年   2篇
排序方式: 共有147条查询结果,搜索用时 65 毫秒
71.
The objectives of these experiments were: 1) to determine an effective culture method for production of transferable bovine embryos following exogenous DNA microinjection; 2) to determine the effect of these methods on the ability of the injected zygotes and 2-cell embryos to develop in vivo; and, 3) to compare development of embryos microinjected as zygotes or 2-cell embryos. DNA fragments encoding bovine growth hormone (bGH), bGH-10Delta6, and a bGH antagonist, bGH-M8 (5) were used. A total of 639 zygotes and 153 2-cell embryos were injected. Zygotes and 2-cell embryos microinjected with bGH-M8 were incubated for 6 days in oviducts of intermediate recipients (rabbits or sheep) or co-cultured in vitro with bovine oviduct epithelial cells. Zygotes and 2-cell embryos microinjected with bGH-10Delta6 were co-cultured in vitro only. The most effective method for the production of transferable bovine embryos following exogenous DNA microinjection was via in vitro co-culturing with bovine epithelial cells. For example, 32.3% of the bGH-M8 and 33.5% of the bGH-10Delta6 microinjected zygotes reached the morula/blastocyst stage while 48.4% and 63.0% of the 2-cell embryos injected with bGH-M8 and bGH-10Delta6, respectively, developed to the morula/blastocyst stage. The percentage of blastocysts obtained for control, non-injected zygotes and 2-cell embryos was 34.5% and 69.6%, respectively. The developmental rate to the morula/blastocyst stage was approximately 20% greater for embryos obtained from microinjected 2-cell embryos relative to microinjected zygotes. However, there was no significant difference in pregnancy rates following transfer of these blastocysts to cow uteri.  相似文献   
72.
Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate‐producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch‐degrading α‐amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ~40‐fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.  相似文献   
73.
ABSTRACT

NT5E encodes ecto-5′-nucleotidase (e5NT, CD73) which hydrolyses extracellular AMP to adenosine. Adenosine has been shown to play a protective role against aortic valve calcification (AVC). We identified two nonsynonymous missense single nucleotide polymorphisms (c.1126A > G, p.T376A and c.1136T > C, p.M379T) in exon 6 of the human NT5E gene. Since both substitutions might affect e5NT activity and consequently alter extracellular adenosine levels, we evaluated the association between NT5E alleles and calcific aortic valve disease in 119 patients (95 patients with AVC and 24 controls). In AVC patients, the frequency of the G allele at c.1126 and the frequency of the GG genotype as well as the frequency of the C allele at c.1136, and the frequencies of CC and TC genotypes tended to be higher as compared to controls. The allele and genotype frequencies in AVC patients and controls were also compared to those calculated from the 1000 Genomes Project data for control individuals of European ancestry (n = 503). We found that the frequency of the C allele at c.1136 is significantly higher in patients with AVC than in the European controls (0.111 vs. 0.054, P = 0.0052). Moreover, e5NT activity in aortic valves showed a trend toward lower levels in AVC patients with CC and TC genotypes than in those with the TT genotype. Our findings indicate that the genetic polymorphism of NT5E may contribute to the pathogenesis of calcific aortic valve disease and that the C allele of SNP c.1136 is associated with an increased risk of AVC.  相似文献   
74.
Chagas disease, caused by the eukaryotic (protozoan) parasite Trypanosoma cruzi, is an alarming emerging global health problem with no clinical drugs available to treat the chronic stage. Azole inhibitors of sterol 14α-demethylase (CYP51) were proven effective against Chagas, and antifungal drugs posaconazole and ravuconazole have entered clinical trials in Spain, Bolivia, and Argentina. Here we present the x-ray structures of T. cruzi CYP51 in complexes with two alternative drug candidates, pyridine derivatives (S)-(4-chlorophenyl)-1-(4-(4-(trifluoromethyl)phenyl)-piperazin-1-yl)-2-(pyridin-3-yl)ethanone (UDO; Protein Data Bank code 3ZG2) and N-[4-(trifluoromethyl)phenyl]-N-[1-[5-(trifluoromethyl)-2-pyridyl]-4-piperi-dyl]pyridin-3-amine (UDD; Protein Data Bank code 3ZG3). These compounds have been developed by the Drugs for Neglected Diseases initiative (DNDi) and are highly promising antichagasic agents in both cellular and in vivo experiments. The binding parameters and inhibitory effects on sterol 14α-demethylase activity in reconstituted enzyme reactions confirmed UDO and UDD as potent and selective T. cruzi CYP51 inhibitors. Comparative analysis of the pyridine- and azole-bound CYP51 structures uncovered the features that make UDO and UDD T. cruzi CYP51-specific. The structures suggest that although a precise fit between the shape of the inhibitor molecules and T. cruzi CYP51 active site topology underlies their high inhibitory potency, a longer coordination bond between the catalytic heme iron and the pyridine nitrogen implies a weaker influence of pyridines on the iron reduction potential, which may be the basis for the observed selectivity of these compounds toward the target enzyme versus other cytochrome P450s, including human drug-metabolizing P450s. These findings may pave the way for the development of novel CYP51-targeted drugs with optimized metabolic properties that are very much needed for the treatment of human infections caused by eukaryotic microbial pathogens.  相似文献   
75.
76.

Background  

Bacterial penicillin-binding proteins (PBPs) can be visualized by their ability to bind radiolabeled or fluorescent β-lactam derivatives both whole cells and membrane/cell enriched fractions. Analysis of the Listeria monocytogenes genome sequence predicted ten genes coding for putative PBPs, but not all of their products have been detected in studies using radiolabeled antibiotics, thus hindering their characterization. Here we report the positive identification of the full set of L. monocytogenes PBPs and the characteristics of the hitherto undescribed PBPD2 (Lmo2812).  相似文献   
77.
Two nonstoichiometric ligand binding sites have been previously reported for the NK-1 receptor, with the use of classical methods (radioligand binding and second messenger assays). The most populated (major, NK-1M) binding site binds substance P (SP) and is related to the adenylyl cyclase pathway. The less populated (minor, NK-1m) binding site binds substance P, C-terminal hexa- and heptapeptide analogues of SP, and the NK-2 endogenous ligand, neurokinin A, and is coupled to the phospholipase C pathway. Here, we have examined these two binding sites with plasmon-waveguide resonance (PWR) spectroscopy that allows the thermodynamics and kinetics of ligand-receptor binding processes and the accompanying structural changes of the receptor to be monitored, through measurements of the anisotropic optical properties of lipid bilayers into which the receptor is incorporated. The binding of the three peptides, substance P, neurokinin A, and propionyl[Met(O(2))(11)]SP(7-11), to the partially purified NK-1 receptor has been analyzed by this method. Substance P and neurokinin A bind to the reconstituted receptor in a biphasic manner with two affinities (K(d1) = 0.14 +/- 0.02 nM and K(d2) = 1.4 +/- 0.18 nM, and K(d1) = 5.5 +/- 0.7 nM and K(d2) = 620 +/- 117 nM, respectively), whereas only one binding affinity (K(d) = 5.5 +/- 0.4 nM) could be observed for propionyl[Met(O(2))(11)]SP(7-11). Moreover, binding experiments in which one ligand was added after another one has been bound to the receptor have shown that the binding of these ligands to each binding site was unaffected by the fact that the other site was already occupied. These data strongly suggest that these two binding sites are independent and non-interconvertible on the time scale of these experiments (1-2 h).  相似文献   
78.
A novel technique of chimeric somatic cell cloning was applied to produce a transgenic rabbit (NT20). Karyoplasts of transgenic adult skin fibroblasts with Tg(Wap-GH1) gene construct as a marker were microsurgically transferred into one, previously enucleated, blastomere of 2-cell non-transgenic embryos, while the second one remained intact. The reconstructed embryos either were cultured in vitro up to the blastocyst stage (Experiment I) or were transferred into recipient-females immediately after the cloning procedure (Experiment II). In Experiment I, 25/102 (24.5%) embryos formed blastocysts from whole embryos and 46/102 (44.12%) embryos developed to the blastocyst stage from single non-operated blastomeres, while the reconstructed blastomeres were damaged and degenerated. Thirteen (12.7%) embryos did not exceed 3- to 4-cell stages and 18 (17.7%) embryos were inhibited at the initial 2-cell stage. Out of 14 blastocysts which were subjected to molecular analysis, the transgene was detected in the cells of 4 blastocysts. In Experiment II, 163/217 (75.0%) embryos were transferred into 9 pseudopregnant recipient-rabbits (an average of 18 embryos per recipient). Four recipient-females (44.4%) became pregnant and delivered a total of 24 (14.7%) pups. Molecular analysis confirmed that two pups (1.2%), one live and one stillborn, showed a positive transgene signal. Live transgenic rabbit NT20 appeared healthy and anatomically as well as physiologically normal. The results of our experiments showed that transgenic adult skin fibroblast cell nuclei, which have been introduced into the cytoplasmic microenvironment of single enucleated blastomeres from 2-cell stage rabbit embryos, are able to direct the development of chimeric embryos not only to the blastocyst stage but also up to term.  相似文献   
79.
There has been a recent explosion in research concerning novel bioactive sphingolipids (SPLs) such as ceramide (Cer), sphingosine (Sph) and sphingosine 1-phosphate (Sph-1P) that necessitates development of accurate and user-friendly methodology for analyzing and quantitating the endogenous levels of these molecules. ESI/MS/MS methodology provides a universal tool used for detecting and monitoring changes in SPL levels and composition from biological materials. Simultaneous ESI/MS/MS analysis of sphingoid bases (SBs), sphingoid base 1-phosphates (SB-1Ps), Cers and sphingomyelins (SMs) is performed on a Thermo Finnigan TSQ 7000 triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) positive ionization mode. Biological materials (cells, tissues or physiological fluids) are fortified with internal standards (ISs), extracted into a one-phase neutral organic solvent system, and analyzed by a Surveyor/TSQ 7000 LC/MS system. Qualitative analysis of SPLs is performed by a Parent Ion scan of a common fragment ion characteristic for a particular class of SPLs. Quantitative analysis is based on calibration curves generated by spiking an artificial matrix with known amounts of target synthetic standards and an equal amount of IS. The calibration curves are constructed by plotting the peak area ratios of analyte to the respective IS against concentration using a linear regression model. This robust analytical procedure can determine the composition of endogenous sphingolipids (ESPLs) in varied biological materials and achieve a detection limit at 1 pmol or lower level. This and related methodology are already defining unexpected specialization and specificity in the metabolism and function of distinct subspecies of individual bioactive SPLs.  相似文献   
80.
Increased generation of dihydrosphingosine (DHS), a bioactive sphingolipid, has been implicated in the cytotoxicity of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) in tumor cells. However, how 4-HPR increases DHS remains unclear. Here we demonstrate that 4-HPR increases the expression of ACER2, which catalyzes the hydrolysis of dihydroceramides to generate DHS, and that ACER2 up-regulation plays a key role in mediating the 4-HPR-induced generation of DHS as well as the cytotoxicity of 4-HPR in tumor cells. Treatment with 4-HPR induced the accumulation of dihydroceramides (DHCs) in tumor cells by inhibiting dihydroceramide desaturase (DES) activity, which catalyzes the conversion of DHCs to ceramides. Treatment with 4-HPR also increased ACER2 expression through a retinoic acid receptor-independent and caspase-dependent manner. Overexpression of ACER2 augmented the 4-HPR-induced generation of DHS as well as 4-HPR cytotoxicity, and 4-HPR-induced death in tumor cells, whereas knocking down ACER2 had the opposite effects. ACER2 overexpression, along with treatment with GT11, another DES inhibitor, markedly increased cellular DHS, leading to tumor cell death, whereas ACER2 overexpression or GT11 treatment alone failed to do so, suggesting that both ACER2 up-regulation and DES inhibition are necessary and sufficient to mediate 4-HPR-induced DHS accumulation, cytotoxicity, and death in tumor cells. Taken together, these results suggest that up-regulation of the ACER2/DHS pathway mediates the cytotoxicity of 4-HPR in tumor cells and that up-regulating or activating ACER2 may improve the anti-cancer activity of 4-HRR and other DHC-inducing agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号