首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   21篇
  291篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2013年   14篇
  2012年   15篇
  2011年   12篇
  2010年   16篇
  2009年   13篇
  2008年   13篇
  2007年   13篇
  2006年   15篇
  2005年   17篇
  2004年   21篇
  2003年   15篇
  2002年   15篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   8篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1975年   3篇
  1974年   1篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   1篇
  1967年   3篇
  1966年   4篇
排序方式: 共有291条查询结果,搜索用时 0 毫秒
31.
The dietary microelement selenium (Se) has been proposed as a potential chemopreventive agent for prostate cancer. This element is present in various amounts in all tissues. Little information is available on Se level in patients with prostate gland disorders. The levels of Se in prostatic gland of patients with prostate cancer, benign prostate hyperplasia, and healthy controls were examined. The Se level for benign prostate hyperplasia (156±30.6 ng/g) was the same as in the control group (157±26.0 ng/g), but in the gland of prostate cancer patients (182±34.1 ng/g wet weight), the Se level was significantly (p<0.01) higher than in both healthy controls and benign prostate hyperplasia. Thus, the Se level in human healthy controls is lower than in kidney and liver but higher compared with other tissues.  相似文献   
32.
Ceramide-induced cell death is thought to be mediated by change in mitochondrial function, although the precise mechanism is unclear. Proposed models suggest that ceramide induces cell death through interaction with latent binding sites on the outer or inner mitochondrial membranes, followed by an increase in membrane permeability, as an intermediate step in ceramide signal propagation. To investigate these models, we developed a new generation of positively charged ceramides that readily accumulate in isolated and in situ mitochondria. Accumulated, positively charged ceramides increased inner membrane permeability and triggered release of mitochondrial cytochrome c. Furthermore, the positively charged ceramide-induced permeability increase was suppressed by cyclosporin A (60%) and 1,3-dicyclohexylcarbodiimide (90%). These observations suggest that the inner membrane permeability increase is due to activation of specific ion transporters, not the generalized loss of lipid bilayer barrier functions. The difference in sensitivity of ceramide-induced ion fluxes to inhibitors of mitochondrial transporters suggests activation of at least two transport systems: the permeability transition pore and the electrogenic H(+) channel. Our results indicate the presence of specific ceramide targets in the mitochondrial matrix, the occupation of which triggers permeability alterations of the inner and outer mitochondrial membranes. These findings also suggest a novel therapeutic role for positively charged ceramides.  相似文献   
33.
Alves ID  Salamon Z  Hruby VJ  Tollin G 《Biochemistry》2005,44(25):9168-9178
A growing body of evidence supports the idea that the plasma membrane bilayer is characterized by a laterally inhomogeneous mixture of lipids, having an organized structure in which lipid molecules segregate into small domains or patches. Such microdomains are characterized by high contents of sphingolipids that form thicker liquid-ordered regions that are resistant to extraction with nonionic detergents. The existence of lipid lateral segregation has been demonstrated in both model and biological membranes, although its role in protein sorting and membrane function still remains unclear. In these studies, plasmon-waveguide resonance (PWR) spectroscopy was employed to investigate the properties of microdomains in a model system consisting of a solid-supported lipid bilayer composed of a 1:1 mixture of palmitoyloleoylphosphatidylcholine (POPC) and brain sphingomyelin (SM), and their influence on the partitioning and functioning of the human delta opioid receptor (hDOR), a G-protein coupled receptor (GPCR). Resonance signals corresponding to two microdomains (POPC-rich and SM-rich) were observed in such bilayers, and the sorting of the receptor into each domain was highly dependent on the type of ligand that was bound. When no ligand was bound, the receptor was incorporated preferentially into the POPC-rich domain; when an agonist or antagonist was bound, the receptor was incorporated preferentially into the SM-rich component, although with a 2-fold greater propensity for this microdomain in the case of the agonist. Binding of G-protein to the agonist-bound receptor in the SM-rich domain occurred with a 30-fold higher affinity than binding to the receptor in the PC-rich domain. The binding of the agonist to an unliganded receptor in the bilayer produced receptor trafficking from the PC-rich to the SM-rich component. Since the SM-rich domain is thicker than the PC-rich domain, and previous studies with the hDOR have shown that the receptor is elongated upon agonist activation, we propose that hydrophobic matching between the receptor and the lipid is a driving force for receptor trafficking to the SM-rich component.  相似文献   
34.
To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter. Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.  相似文献   
35.
Plasmon-waveguide resonance spectroscopy is a recently developed optical method that allows characterization of mass and structural changes in two-dimensionally ordered thin films (e.g., proteolipid membranes) deposited onto a sensor surface. Full analysis of these systems involves fitting theoretical curves (obtained using Maxwell's equations) to experimental spectra measured using s- and p-polarized excitation. This allows values to be obtained for refractive indices and optical extinction coefficients in these two directions, as well as a value for film thickness, thereby providing information about mass density and anisotropy changes. This is a time-consuming process that works well for simple systems in which only a single conformational event occurs, but cannot distinguish between events involving multiple conformations that proceed either sequentially or in a parallel series of events. This article describes a graphical method that can distinguish between mass density and anisotropy changes in a simpler, more rapid procedure, even for processes that proceed via multiple conformational events. This involves measurement of plasmon-waveguide resonance spectral shifts obtained upon molecular interactions occurring in deposited films with both s- and p-polarized excitation, and transforming these from an (s-p) coordinate system into a (mass-structure) coordinate system. This procedure is illustrated by data obtained upon the binding of a small peptide, penetratin, to solid-supported lipid bilayer membranes.  相似文献   
36.
37.
Sterol 14α-demethylase (14DM, the CYP51 family of cytochrome P450) is an essential enzyme in sterol biosynthesis in eukaryotes. It serves as a major drug target for fungal diseases and can potentially become a target for treatment of human infections with protozoa. Here we present 1.9 Å resolution crystal structures of 14DM from the protozoan pathogen Trypanosoma brucei, ligand-free and complexed with a strong chemically selected inhibitor N-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2-yl)benzamide that we previously found to produce potent antiparasitic effects in Trypanosomatidae. This is the first structure of a eukaryotic microsomal 14DM that acts on sterol biosynthesis, and it differs profoundly from that of the water-soluble CYP51 family member from Mycobacterium tuberculosis, both in organization of the active site cavity and in the substrate access channel location. Inhibitor binding does not cause large scale conformational rearrangements, yet induces unanticipated local alterations in the active site, including formation of a hydrogen bond network that connects, via the inhibitor amide group fragment, two remote functionally essential protein segments and alters the heme environment. The inhibitor binding mode provides a possible explanation for both its functionally irreversible effect on the enzyme activity and its selectivity toward the 14DM from human pathogens versus the human 14DM ortholog. The structures shed new light on 14DM functional conservation and open an excellent opportunity for directed design of novel antiparasitic drugs.  相似文献   
38.
Human alkaline ceramidase 2 (ACER2) plays an important role in cellular responses by regulating the hydrolysis of ceramides in cells. Here we report its biochemical characterization, membrane topology, and activity regulation. Recombinant ACER2 was expressed in yeast mutant cells (Δypc1Δydc1) that lack endogenous ceramidase activity, and microsomes from ACER2-expressiong yeast cells were used to biochemically characterize ACER2. ACER2 catalyzed the hydrolysis of various ceramides and followed Michaelis-Menten kinetics. ACER2 required Ca2+ for both its in vitro and cellular activities. ACER2 has 7 putative transmembrane domains, and its amino (N) and carboxyl (C) termini were found to be oriented in the lumen of the Golgi complex and cytosol, respectively. ACER2 mutant (ACER2ΔN36) lacking the N-terminal tail (the first 36 amino acid residues) exhibited undetectable activity and was mislocalized to the endoplasmic reticulum, suggesting that the N-terminal tail is necessary for both ACER2 activity and Golgi localization. ACER2 mutant (ACER2ΔN13) lacking the first 13 residues was also mislocalized to the endoplasmic reticulum although it retained ceramidase activity. Overexpression of ACER2, ACER2ΔN13, but not ACER2ΔN36 increased the release of sphingosine 1-phosphate from cells, suggesting that its mislocalization does not affect the ability of ACER2 to regulate sphingosine 1-phosphate secretion. However, overexpression of ACER2 but not ACER2ΔN13 or ACER2ΔN36 inhibited the glycosylation of integrin β1 subunit and Lamp1, suggesting that its mistargeting abolishes the ability of ACER2 to regulation protein glycosylation. These data suggest that ACER2 has broad substrate specificity and requires Ca2+ for its activity and that ACER2 has the cytosolic C terminus and luminal N terminus, which are essential for its activity, correct cellular localization, and regulation for protein glycosylation.  相似文献   
39.
Stress-inducible Hsp70i and constitutively expressed Hsc70 are highly related heat shock proteins. Aberrant expression levels and intracellular localization of these proteins has been suggested as a potential marker in certain tumors. The aim of our study was to work out a reliable, immunohistochemical detection of the stress-inducible Hsp70i protein and enabling discrimination between Hsp70i and Hsc70 proteins in paraffin-embedded human tissues. We tested the effect of several fixative procedures and antigen retrieval on the effectiveness of the Hsp70i detection in murine cells cultured in vitro and in liver of rats subjected to heat shock. For cells grown in vitro, specific Hsp70i immunoreactivity was obtained with all fixatives used. However, samples fixed in 10% formalin and 4% paraformaldehyde required antigen retrieval. In liver tissue embedded in paraffin, regardless the fixative used, positive Hsp70i staining could be visible only if antigen retrieval was applied. We applied this procedure for detection of Hsp70i in routine sections of breast and lung cancers fixed with 10% formalin and found that the application of thermal antigen retrieval significantly enhanced the SPA810 immunoreactivity and reduced background staining. This procedure enabled also the differential detection of Hsp70i and Hsc70 in routine histopathological preparations.  相似文献   
40.
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号