首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   7篇
  133篇
  2021年   4篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   8篇
  2007年   6篇
  2006年   16篇
  2005年   5篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1958年   3篇
  1957年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
51.
Nitrogen Utilization Efficiency in Canola Cultivars at Grain Harvest   总被引:1,自引:0,他引:1  
Canola (Brassica napus L.) cultivars with improved nitrogen utilization efficiency (NUE) at grain harvest are of interest to growers to reduce fertilizer inputs. Our objective was to determine whether cultivar-specific responses in NUE (seed yield per N accumulated in the whole plant) could be related to the differences in dry matter and N partitioning among various plant parts. Four spring canola cultivars were grown in a glasshouse under the conditions of low and high N supply. When compared to high-N treatment, deficient N conditions resulted in a similar decrease in dry weight for all cultivars, averaging 46% for shoot, 47% for root, and 45% for dropped leaves. The reductions in N concentrations at low-N compared to high-N treatment were much smaller and averaged 15% for shoot, 16% for root and 10% for dropped leaves. Although significant variations occurred for dry weight, N concentration and N uptake in various plant sections, all cultivars accumulated a similar amount of N in total plant biomass at harvest. However, significant differences in plant biomass, seed yield and consequently, NUE existed because more N-efficient cultivars Eyre and Charlton produced larger seed yields than less N-efficient cultivars Pinnacle and Rainbow. No consistent variations in N concentration in various plant parts could be established among tested cultivars. Thus, cultivar-specific responses in NUE were mainly attributed to the differences in the root-to-shoot ratio and harvest index. N-efficient Eyre produced seed yield similar to the highest yielding Charlton, though it had the smallest plant dry weight of all cultivars. In contrast, N-inefficient Rainbow had the largest plant biomass, but produced the smallest seed yield because of its lowest harvest index and the highest root-to-shoot ratio. The absence of cultivar×N treatment interactions indicated that cultivars performed similarly for plant biomass, N uptake and seed yield across two contrasting N supplies. Canola cultivars significantly differed in NUE despite a similar amount of absorbed N in plant biomass; more N-efficient cultivars outyielded less N-efficient ones primarily because of cultivar-specific variations in the root-to-shoot ratio and harvest index.  相似文献   
52.
Dědi?ně faktory podmiňující v rostlině schopnost reagovat na infekci virem mozaiky tabáku (Nicotiana virus 1) a virem ?erné krou?kovitosti zeli (Brassica virus 1) lokálními nekrotickými lézemi, resp. systémovoù infekcí, jsou u těchto dvou vir? Jen zdánlivě v inversní závislosti. Nicotiana tabacum var. Xanthi-nc, který získal nekrotický faktor z N. glutinosa, má je?tě nekrotický faktor pro infekci virem ?erné krou?kovitosti zelí.  相似文献   
53.
There is substantial evidence that excitotoxicity and oxidative damage may contribute to Huntington's disease (HD) pathogenesis. We examined whether the novel anti-oxidant compound BN82451 exerts neuroprotective effects in the R6/2 transgenic mouse model of HD. Oral administration of BN82451 significantly improved motor performance and improved survival by 15%. Oral administration of BN82451 significantly reduced gross brain atrophy, neuronal atrophy and the number of neuronal intranuclear inclusions at 90 days of age. These findings provide evidence that novel anti-oxidants such as BN82451 may be useful for treating HD.  相似文献   
54.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   
55.
Gherardi  Mark J  Rengel  Zdenko 《Plant and Soil》2004,260(1-2):271-282
Some low-molecular-weight carboxylates commonly found in plant root exudates have the potential to increase the availability of Mn in the rhizosphere. Release of various compounds into the rhizosphere by plant roots may also be a mechanism by which certain species and genotypes are able to tolerate conditions of low Mn availability better than others. Lucerne (Medicago sativa L.) plants of Salado, a genotype tolerant to Mn deficiency, and Sirosal, an intolerant genotype, were grown in solution culture with 0, 5 or 500 nM Mn (Mn-0, Mn-5 and Mn-500). Exudates of whole root systems were collected at 14, 24 and 36 d and analysed by HPLC. Oxalate, tartarate, L-malate, lactate, malonate, maleate, citrate and succinate were detected and quantified in exudates under all Mn treatments. Malonate, citrate and succinate accounted for the majority of carboxylates in the exudates. Exudation increased with plant age, but amounts of individual carboxylates remained constant in proportion to the total amount exuded. A significant increase in exudation of all carboxylates other than malonate and maleate resulted from omission of Mn from nutrient solutions. Salado exuded more oxalate, tartarate, L-malate, lactate, citrate and succinate than Sirosal at Mn-0, and more citrate and succinate than Sirosal at Mn-5. Genotypic differences in carboxylate exudation under Mn-0 were associated with production of roots with diameter <100 μm. Plant Mn concentrations and growth rates suggested carboxylate exudation differences were not the sole factor responsible for differential tolerance to Mn deficiency in the lucerne genotypes.  相似文献   
56.
Adolescent idiopathic scoliosis (AIS) is one of the most common orthopedic disorders, affecting up to 4% of schoolchildren worldwide. We studied seven unrelated multiplex families of southern Chinese descent with AIS, consisting of 25 affected members. A genomewide scan with >400 fluorescent microsatellite markers was performed. Multipoint linkage analysis by GENEHUNTER revealed significant linkage of the abnormal phenotype to the distal short arm of chromosome 19, with both a maximum multipoint LOD score and a nonparametric LOD score of 4.93. Two-point linkage analysis by MLINK gave a LOD score of 3.63 (recombination fraction theta[m=f]=0.00) at D19S216. Further high-density mapping and informative recombinations defined the AIS critical region in the vicinity of D19S216, flanked by D19S894 and D19S1034, spanning 5.2 cM on the sex-averaged genetic map on chromosome 19p13.3.  相似文献   
57.

Background

Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.

Methodology

The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR). The experimental set includes 71 spore (Basidiomycota) and 121 pollen (Pinales, Fagales and Poales) samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years.

Results

The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.  相似文献   
58.
Quaghebeur M  Rengel Z 《Plant physiology》2003,132(3):1600-1609
The recent discovery that phytochelatins are important for arsenic (As) detoxification in terrestrial plants results in the necessity to understand As speciation and metabolism in plant material. A hydroponic study was therefore conducted to examine the effects of different levels of phosphate and arsenate [As(V)] on As speciation and distribution in tolerant and non-tolerant clones of Holcus lanatus. Speciation of As in tissue (using high-performance liquid chromatography-inductively coupled plasma mass spectrometry) revealed that the predominant species present were the inorganic As species (As(V) and arsenite [As(III)]), although small levels (<1%) of organic As species (dimethylarsinic acid and monomethylarsonic acid) were detected in shoot material. In roots, the proportion of total As present as As(III) generally increased with increasing levels of As(V) in the nutrient solution, whereas in shoots, the proportion of total As present as As(III) generally decreased with increasing levels of As(V). H. lanatus plants growing in the high-phosphorus (P) (100 micro M) solution contained a higher proportion of As(V) (with regard to total As) in both roots and shoots than plants supplied with low P (10 micro M); in addition, tolerant clones generally contained a higher proportion of As(V) with regard to total As than non-tolerant clones. The study further revealed that As(V) can be reduced to As(III) in both roots and shoots. Although the reduction capacity was limited, the reduction was closely regulated by As influx for all treatments. The results therefore provide a new understanding about As metabolism in H. lanatus.  相似文献   
59.
Poly(ADP-ribosylation) is rapidly stimulated in cells following DNA damage. This posttranslational modification is regulated by the synthesizing enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Although the role of PARP-1 in response to DNA damage has been studied extensively, the function of PARG and the impact of poly(ADP-ribose) homeostasis in various cellular processes are largely unknown. Here we show that by gene targeting in embryonic stem cells and mice, we specifically deleted the 110-kDa PARG protein (PARG(110)) normally found in the nucleus and that depletion of PARG(110) severely compromised the automodification of PARP-1 in vivo. PARG(110)-deficient mice were viable and fertile, but these mice were hypersensitive to alkylating agents and ionizing radiation. In addition, these mice were susceptible to streptozotocin-induced diabetes and endotoxic shock. These data indicate that PARG(110) plays an important role in DNA damage responses and in pathological processes.  相似文献   
60.
Preface     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号