首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   7篇
  2023年   3篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   11篇
  2014年   16篇
  2013年   27篇
  2012年   23篇
  2011年   15篇
  2010年   27篇
  2009年   15篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2001年   5篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1994年   4篇
  1993年   4篇
  1991年   5篇
  1988年   6篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   7篇
  1982年   3篇
  1981年   5篇
  1979年   10篇
  1978年   6篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1967年   3篇
  1966年   5篇
  1965年   5篇
  1964年   4篇
  1962年   3篇
  1961年   2篇
  1959年   5篇
  1958年   12篇
  1957年   5篇
  1956年   4篇
排序方式: 共有370条查询结果,搜索用时 15 毫秒
71.

Background

White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown.

Methodology/Principal Findings

We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval.

Conclusions/Significance

G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme.  相似文献   
72.
The genus Impatiens (Balsaminaceae) includes three widespread species in the Czech Republic, central Europe: the native I. noli-tangere, and two invasive species, I. parviflora and I. glandulifera, differing in the dynamics of invasion. They all occur in similar habitats and share basic life-history characteristics, which make them a suitable model for studying species traits associated with invasiveness. In this study we investigated differences in habitat requirements of these Impatiens species, their coexistence and short-term population dynamics in the field. We established 84 1 × 1 m permanent plots in five localities where all three species co-occurred. In each plot vascular plant species were determined, their cover estimated and all individuals of Impatiens species counted. Site characteristics including tree canopy cover, soil moisture, nitrogen and carbon content, and slope were measured directly. Nutrients, light, humidity and soil reaction were estimated using Ellenberg indicator values. The presence of I. noli-tangere was strongly correlated with high soil moisture, that of I. parviflora with high tree canopy cover and low soil moisture. Impatiens glandulifera exhibited a unimodal response to tree canopy cover, avoiding both very shaded and fully open sites. The current-year abundances of all species were negatively related to those of congeneric species. These results suggest that the coexistence of Impatiens species in the same habitat is due to microsite differentiation. Further spread of I. glandulifera to new habitats, and reduction of the native I. noli-tangere niche, can be expected in areas where the latter species co-occurs with competitively strong invasive congeners.  相似文献   
73.
74.
A series of gold(I) complexes involving triphenylphosphine (PPh3) and one N-donor ligand derived from deprotonated mono- or disubstituted hypoxanthine (HLn) of the general composition [Au(Ln)(PPh3)] (1–9) is reported. The complexes were thoroughly characterized, including multinuclear high resolution NMR spectroscopy as well as single crystal X-ray analysis (for complexes 1 and 3). The complexes were screened for their in vitro cytotoxicity against human cancer cell lines MCF7 (breast carcinoma), HOS (osteosarcoma) and THP-1 (monocytic leukaemia), which identified the complexes 4–6 as the most promising representatives, who antiproliferative activity was further tested against A549 (lung adenocarcinoma), G-361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) cell lines. Complexes 4–6 showed a significantly higher in vitro anticancer effect against the employed cancer cells, except for G-361, as compared with the commercially used anticancer drug cisplatin, with IC50 ≈ 1–30 µM. Anti-inflammatory activity was evaluated in vitro by the assessment of the ability of the complexes to modulate secretion of the pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the lipopolysaccharide-activated macrophage-like THP-1 cell model. The results of this study identified the complexes as auspicious anti-inflammatory agents with similar or better activity as compared with the clinically applied gold-based antiarthritic drug Auranofin. In an effort to explore the possible mechanisms responsible for the biological effect, the products of interactions of selected complexes with sulfur-containing biomolecules (L-cysteine and reduced glutathione) were studied by means of the mass-spectrometry study.  相似文献   
75.
Antifungal drug ketoconazole causes severe drug-drug interactions by influencing gene expression and catalytic activity of major drug-metabolizing enzyme cytochrome P450 CYP3A4. Ketoconazole is administered in the form of racemic mixture of two cis-enantiomers, i.e. (+)-ketoconazole and (−)-ketoconazole. Many enantiopure drugs were introduced to human pharmacotherapy in last two decades. In the current paper, we have examined the effects of ketoconazole cis-enantiomers on the expression of CYP3A4 in human hepatocytes and HepG2 cells and on catalytic activity of CYP3A4 in human liver microsomes. We show that both ketoconazole enantiomers induce CYP3A4 mRNA and protein in human hepatocytes and HepG2 cells. Gene reporter assays revealed partial agonist activity of ketoconazole enantiomers towards pregnane X receptor PXR. Catalytic activity of CYP3A4/5 towards two prototypic substrates of CYP3A enzymes, testosterone and midazolam, was determined in presence of both (+)-ketoconazole and (−)-ketoconazole in human liver microsomes. Overall, both ketoconazole cis-enantiomers induced CYP3A4 in human cells and inhibited CYP3A4 in human liver microsomes. While interaction of ketoconazole with PXR and induction of CYP3A4 did not display enantiospecific pattern, inhibition of CYP3A4 catalytic activity by ketoconazole differed for ketoconazole cis-enantiomers ((+)-ketoconazole IC50 1.69 µM, Ki 0.92 µM for testosterone, IC50 1.46 µM, Ki 2.52 µM for midazolam; (−)-ketoconazole IC50 0.90 µM, Ki 0.17 µM for testosterone, IC50 1.04 µM, Ki 1.51 µM for midazolam).  相似文献   
76.
77.
Pharmaceutical grade trypsin is in ever-increasing demand for medical and industrial applications. Improving the efficiency of existing biotechnological manufacturing processes is therefore paramount. When produced biotechnologically, trypsinogen—the inactive precursor of trypsin—is advantageous, since active trypsin would impair cell viability. To study factors affecting cell physiology and the production of trypsinogen in fed-batch cultures, we built a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. The experiments were performed with two different pH values (5.0 and 5.9) and two constant specific growth rates (0.02 and 0.04 1/h), maintained using exponential addition of methanol. All the productivity data presented rely on an active determination of trypsin obtained by proteolysis of the trypsinogen produced. The pH of the medium did not affect cell growth, but significantly influenced specific production of trypsinogen: A 1.7-fold higher concentration of trypsinogen was achieved at pH 5.9 (64 mg/L at 0.02 1/h) compared to pH 5.0. EGFP was primarily used to facilitate detection of intracellular protein over the biosynthetic time course. Using flow cytometry with fluorescence detection, cell disruption was avoided, and protein extraction and purification prior to analysis were unnecessary. However, Western blot and SDS-PAGE showed that cleavage of EGFP-trypsinogen fusion protein occurred, probably caused by Pichia-endogenous proteases. The fluorescence analysis did therefore not accurately represent the actual trypsinogen concentration. However, we gained new experimentally-relevant insights, which can be used to avoid misinterpretation of tracking and quantifying as well as online-monitoring of proteins with the frequently used fluorescent tags.  相似文献   
78.
This paper analyses long-term (1960–2015) onset of flowering in 16 native terrestrial plants (11 of them produce important allergens) recorded in different parts of the Czech Republic (southern, central and northern part) in relation to the North Atlantic Oscillation (NAO) index of the preceding winter and thermal data—growing degree-days (GDD) and soil temperature. Flowering occurred significantly earlier following positive winter NAO phases (causing spring to be warmer than normal in Central Europe) in nearly all early-flowering (February, March, April) species; high Pearson correlation values were recorded in, e.g. wood anemone, common snowdrop, goat willow, common hazel and common alder. There was found a difference between the southern and northern part of the country, e.g. in silver birch and pedunculate oak. Out of the later-flowering (May–July) plant species, black elder and meadow foxtail also significantly correlated with the winter NAO index, lime tree correlated less markedly. The best results of a threshold for calculation of GDD to onset of beginning of flowering were found in lime tree—it was 5 °C at all three stations. Results of other taxa were more variable (e.g. 4–7 °C in goat willow; 6–10 °C in silver birch). Pearson correlation coefficients between NAO index and GDD were negative in lime tree at all thresholds (5, 6, 7, 8, 9, 10 °C), while goat willow and silver birch were not so uniform (both positive and negative values). Correlation coefficients between phenophase onset and soil temperature (10 cm depth) had the highest values in silver birch, European larch and wood anemone. Stations situated at higher elevation showed negative correlation coefficient with soil temperature in common snowdrop, pedunculate oak, meadow foxtail and lime tree; other values were positive.  相似文献   
79.
Temporal patterns in butterfly behavior should reflect diurnal, seasonal and population-level changes in mate availability. Investment into mating should peak at times when potential mates are at a maximum; at other times, individuals should save energy and focus on maintenance activities. To explore these assumptions, we re-analyzed mark-recapture data containing records of behavior for each handled individual: 15 species, 21 separate datasets, total of 20,828 activity records (13,223 males and 7605 females). We used ordination analysis, with activity categories as response variables and controls for dataset identity and weather effects. Across species, basking and nectaring were prevailing morning activities, while mating peaked at afternoons. With the progressing season, males switched from maintenance behavior to mating activities, whereas opposite trend applied to females. Density predictors (sex ratio, daily population size) revealed that mating concentrated to high densities of the opposite sex and that female oviposition, resting and nectaring increased under low density of males. Exploring mark-recapture data for studying behavioral patterns proved to be fruitful but cannot replace focused observations or experiments.  相似文献   
80.
Distribution of post-translationally modified tubulins in cells of Nicotiana tabacum L. was analysed using a panel of specific antibodies. Polyglutamylated, tyrosinated, nontyrosinated, acetylated and Δ2-tubulin variants were detected on α-tubulin subunits; polyglutamylation was also found on β-tubulin subunits. Modified tubulins were detected by immunofluorescence microscopy in interphase microtubules, preprophase bands, mitotic spindles as well as in phragmoplasts. They were, however, located differently in the various microtubule structures. The antibodies against tyrosinated, acetylated and polyglutamylated tubulins gave uniform staining along all microtubules, while antibodies against nontyrosinated and Δ2-tubulin provided dot-like staining of interphase microtubules. Additionally, immunoreactivity of antibodies against acetylated and Δ2-tubulins was strong in the pole regions of mitotic spindles. High-resolution isoelectric focusing revealed 22 tubulin charge variants in N. tabacum suspension cells. Immunoblotting with antibodies TU-01 and TU-06 against conserved antigenic determinants of α- and β-tubulin molecules, respectively, revealed that 11 isoforms belonged to the α-subunit and 11 isoforms to the β-subunit. Whereas antibodies against polyglutamylated, tyrosinated and acetylated tubulins reacted with several α-tubulin isoforms, antibodies against nontyrosinated and Δ2-tubulin reacted with only one. The combined data demonstrate that plant tubulin is extensively post-translationally modified and that these modifications participate in the generation of plant tubulin polymorphism. Received: 2 May 1996 / Accepted: 16 September 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号