首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12472篇
  免费   928篇
  国内免费   3篇
  13403篇
  2018年   242篇
  2017年   212篇
  2016年   280篇
  2015年   321篇
  2014年   352篇
  2013年   462篇
  2012年   554篇
  2011年   579篇
  2010年   392篇
  2009年   371篇
  2008年   463篇
  2007年   402篇
  2006年   386篇
  2005年   344篇
  2004年   376篇
  2003年   335篇
  2002年   292篇
  2001年   296篇
  2000年   292篇
  1999年   243篇
  1998年   153篇
  1997年   132篇
  1996年   127篇
  1995年   129篇
  1992年   199篇
  1991年   164篇
  1990年   215篇
  1989年   184篇
  1988年   199篇
  1987年   185篇
  1986年   170篇
  1985年   185篇
  1984年   184篇
  1983年   151篇
  1982年   148篇
  1981年   146篇
  1980年   129篇
  1979年   195篇
  1978年   183篇
  1977年   169篇
  1976年   137篇
  1975年   172篇
  1974年   184篇
  1973年   188篇
  1972年   176篇
  1970年   161篇
  1969年   161篇
  1968年   134篇
  1967年   137篇
  1966年   141篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.  相似文献   
23.
Cells of Rhodopseudomonas sphaeroides grown under saturating light conditions (30 W/m2) and then shifted to low light intensity (3 W/m2) required 2.5 h to adapt to the new lower light conditions. After the shift, cell growth, whole cell protein accumulation, and bacteriochlorophyll accumulation ceased immediately. Approximately midway into the adaptation period, bacteriochlorophyll synthesis commenced at a new, higher rate, which continued through the beginning of the low-light growth period until new steady-state levels were reached. Immediately after the downshift, the rate of cellular protein synthesis declined to 22% of its preshift rate. Pulse-labeling of protein throughout the adaptation period and comparison with a steady-state prelabel culture revealed that synthesis of two of the three light-harvesting proteins, as well as two additional high-molecular-weight photosynthetic membrane proteins, was derepressed three- to fivefold compared with bulk cellular protein. Finally, the synthesis of at least three soluble proteins showed light-dependent regulation after the light downshift. These results are discussed in terms of the light-dependent regulation of synthesis of the photosynthetic membrane macromolecular components and the division of protein synthesis between the photosynthetic membranes and the soluble cell phase.  相似文献   
24.
25.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
26.
27.
    
  相似文献   
28.
29.
30.
1. Within the range of the given conditions of measuring static and dynamic properties of the rabbit gastrocnemius muscle the following results were obtained: a) the dependence of the maxima of isotonic shortening upon the relative length of the muscle at constant load is linear; b) the parameters of the non-linear dependence of the passive elastic force of the muscle upon its relative length (measured in series) were identified using asymptotic regression; c) the time course of isotonic contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be satisfactorily approximated by responses of a linear system to a step-function; d) the time course of isometric contractions (at an interval from 0 to 0.3 s after the beginning of stimulation) could be closely approximated by responses of a linear system to a step-function. 2. The time constants of isotonic and isometric contractions were determined as the parameters of the corresponding linear systems. 3. The maximum rates of the isometric and isotonic contractions were determined as maxima of the first derivatives of the responses of the corresponding models. 4. The experimental set-up made it possible to compare the values of the parameters concomitantly followed at various muscle lengths and at various loads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号