首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 203 毫秒
11.
The mitochondrial production of reactive oxygen species is inversely proportional to longevity in animals. A key question now is, which molecules, among those that are oxidized, affect the lifespan of the organism most significantly?  相似文献   
12.
Sickle cell anemia (SCA) is an inherited hemolytic anemia with compensatory reticulocytosis. Recent studies have shown that increased levels of reticulocytosis during infancy are associated with increased hospitalizations for SCA sequelae as well as cerebrovascular pathologies. In this study, absolute reticulocyte counts (ARC) measured prior to transfusion were analysed among a cohort of 29 pediatric SCA patients receiving chronic transfusion therapy (CTT) for primary and secondary stroke prevention. A cross-sectional flow cytometric analysis of the reticulocyte phenotype was also performed. Mean duration of CTT was 3.1 ± 2.6 years. Fifteen subjects with magnetic resonance angiography (MRA) -vasculopathy had significantly higher mean ARC prior to initiating CTT compared to 14 subjects without MRA-vasculopathy (427.6 ± 109.0 K/μl vs. 324.8 ± 109.2 K/μl, p<0.05). No significant differences in hemoglobin or percentage sickle hemoglobin (HbS) were noted between the two groups at baseline. Reticulocyte phenotyping further demonstrated that the percentages of circulating immature [CD36(+), CD71(+)] reticulocytes positively correlated with ARC in both groups. During the first year of CTT, neither group had significant reductions in ARC. Among this group of children with SCA, cerebrovasculopathy on MRA at initiation of CTT was associated with increased reticulocytosis, which was not reduced after 12 months of transfusions.  相似文献   
13.

Key message

Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible.

Abstract

We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7–8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.  相似文献   
14.
Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cytoprotector in yeast (Saccharomyces cerevisiae), preventing Bax, hydrogen peroxide, and heat stress induced cell death, while also delaying yeast senescence. When tobacco (Nicotiana tabacum) leaves were exposed to lethal levels of salt and heat stress, features associated with mammalian apoptosis were observed. Importantly, transient expression of LePHGPx protected tobacco leaves from salt and heat stress and suppressed the apoptotic-like features. As has been reported, conditional expression of Bax was lethal in tobacco, resulting in tissue collapse and membrane permeability to Evans blue. When LePHGPx was coexpressed with Bax, little cell death and no vital staining were observed. Moreover, stable expression of LePHGPx in tobacco conferred protection against the fungal phytopathogen Botrytis cinerea. Taken together, our data indicated that LePHGPx can protect plant tissue from a variety of stresses. Moreover, functional screens in yeast are a viable tool for the identification of plant genes that regulate cell death.  相似文献   
15.
Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches.  相似文献   
16.
Black bean aphid is an important common bean pest in the world. Aphids damage crops both directly by their feeding and by spreading viruses. Also, they indirectly damages with excretion honeydew and smokes moulds growth through some physiological processes and transmission of viruses. Resistant cultivars application is the main strategy to control Aphis fabae Scopoli. In this experiment, different lines and cultivars were infested with five wingless adult aphids. After 7 and 14?days, plants were evaluated and aphid population was counted and recorded. After 45?days when plants reached to the flowering stage, test was repeated. Result showed that there was a significant difference among cultivars in number of adult aphid in two-leaf stage. Most of the number of adult at the first week in two-leaf stage observed on Goynok cultivar that had significant difference to other lines and cultivars. Number of adults and nymphs among the line and cultivar at flowering stage did not show significant difference. Number of deployed aphids after two weeks was significantly higher than the first week that observed in all cultivars. Totally, the most resistant cultivar was Sayad and the most susceptible cultivar was Goynok.  相似文献   
17.
Non‐homologous end joining (NHEJ) is the major model proposed for Agrobacterium T‐DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA‐PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM‐ and Rad3‐related (ATR), play an important role in ‘classical’ (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a ‘backup’ (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant‐specific DNA LIGASE VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild‐type plants, suggesting enhanced T‐DNA integration in these mutants. These results were confirmed using a promoter‐trap transformation vector that requires T‐DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus‐induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T‐DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T‐DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T‐DNA integration. Thus, T‐DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration.  相似文献   
18.
Galactomannan gums are widely used in the food and oil industries, and there is considerable interest in applying biotechnological approaches to improve their physical properties. A mannan synthase from guar ( Cyamopsis tetragonoloba ) was expressed under the control of a bean β-phaseolin promoter in transgenic Medicago truncatula . Although the expression of exogenous mannan synthase caused a slight decrease in galactomannan levels in Medicago , the molecular weight and viscosity of the polymer were significantly increased, although the mannose to galactose ratio and degree of polydispersity remained unchanged. At the same time, expression of about 2.8% of the genes was altered significantly in the seeds of transgenic Medicago lines analysed by Affymetrix genome chip, with a particularly striking induction of putative trehalose phosphate synthase genes. Mannan synthase expression also caused large alterations in the levels of a number of sugars and sugar alcohols, suggesting that over-expression of a processive glycosyltransferase perturbs the mechanisms of sugar sensing and/or homeostasis, possibly involving signalling via trehalose-6-phosphate.  相似文献   
19.
Generation and characterization of endonuclease G null mice   总被引:6,自引:0,他引:6       下载免费PDF全文
Endonuclease G (endo G) is one of the most abundant nucleases in eukaryotic cells. It is encoded in the nucleus and imported to the mitochondrial intermembrane space. This nuclease is active on single- and double-stranded DNA. We genetically disrupted the endo G gene in mice without disturbing a conserved, overlapping gene of unknown function that is oriented tail to tail with the endo G gene. In these mice, the production of endo G protein is not detected, and the disruption abolishes the nuclease activity of endo G. The absence of endo G has no effect on mitochondrial DNA copy number, structure, or mutation rate over the first five generations. There is also no obvious effect on nuclear DNA degradation in standard apoptosis assays. The endo G null mice are viable and show no age-related or generational abnormalities anatomically or histologically. We infer that this highly conserved protein has no mitochondrial or apoptosis function that can discerned by the assays described here and that it may have a function yet to be determined. The early embryonic lethality of endo G null mice recently reported by others may be due to the disruption of the gene that overlaps the endo G gene.  相似文献   
20.
The nonhomologous DNA end-joining pathway (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs), is essential for maintaining genomic stability. Knockout animals for components in this pathway demonstrate a distinct pattern of cell death in the developing brain. Here we demonstrate that cell death is also present in the developing retina of E14.5 Ku86-deficient mouse embryos, suggesting that the increase in cell death in the retina is associated with chromosome breaks. In the adult retina, we do not find continuing apoptosis, but interestingly, we find decreased numbers of total neuronal cells. This suggests that the increased retinal apoptosis during embryogenesis causes the reduction in cell numbers observed in the adult retina. This analysis of the retina provides the first opportunity to formally test the hypothesis that embryonic apoptosis accounts for reduced total cell numbers in adult Ku86-/- mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号