首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   18篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   8篇
  2008年   3篇
  2007年   7篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   5篇
  1999年   6篇
  1998年   10篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有179条查询结果,搜索用时 31 毫秒
91.
Activation of stress-activated protein kinases (SAPKs) is essential for proper cell adaptation to extracellular stimuli. The exposure of yeast cells to high osmolarity, or mutations that lead to activation of the Hog1 SAPK, result in cell-cycle arrest. The mechanisms by which Hog1 and SAPKs in general regulate cell-cycle progression are not completely understood. Here we show that Hog1 regulates cell cycle progression at the G1 phase by a dual mechanism that involves downregulation of cyclin expression and direct targeting of the CDK-inhibitor protein Sic1. Hog1 interacts physically with Sic1 in vivo and in vitro, and phosphorylates a single residue at the carboxyl terminus of Sic1, which, in combination with the downregulation of cyclin expression, results in Sic1 stabilization and inhibition of cell-cycle progression. Cells lacking Sic1 or containing a Sic1 allele mutated in the Hog1 phosphorylation site are unable to arrest at G1 phase after Hog1 activation, and become sensitive to osmostress. Together, our data indicate that the Sic1 CDK-inhibitor is the molecular target for the SAPK Hog1 that is required to modulate cell-cycle progression in response to stress.  相似文献   
92.
93.
94.
95.
96.
The mediation of fluid homeostasis by multiple classes of aquaporins has been suggested to be essential during spermatogenesis and spermiation. In the marine teleost gilthead seabream (Sparus aurata), seven distinct aquaporins, Aqp0a, -1aa, -1ab, -7, -8b, -9b and -10b, are differentially expressed in the somatic and germ cell lineages of the spermiating testis, but the endocrine regulation of these channels during germ cell development is unknown. In this study, we investigated the in vivo developmental expression of aquaporins in the seabream testis together with plasma androgen concentrations. We then examined the in vitro regulatory effects of recombinant piscine gonadotropins, follicle-stimulating (rFsh) and luteinizing (rLh) hormones, and sex steroids on aquaporin mRNA levels during the spermatogenic cycle. During the resting phase, when plasma levels of androgens were low, the testis exclusively contained proliferating spermatogonia expressing Aqp1ab, whereas Aqp10b and -9b were localized in Sertoli and Leydig cells, respectively. At the onset of spermatogenesis and during spermiation, the increase of androgen plasma levels correlated with the additional appearance of Aqp0a and -7 in Sertoli cells, Aqp0a in spermatogonia and spermatocytes, Aqp1ab, -7 and -10b from spermatogonia to spermatozoa, and Aqp1aa and -8b in spermatids and spermatozoa. Short-term in vitro incubation of testis explants indicated that most aquaporins in Sertoli cells and early germ cells were upregulated by rFsh and/or rLh through androgen-dependent pathways, although Aqp1ab in proliferating spermatogonia was also activated by estrogens. However, expression of Aqp9b in Leydig cells, and of Aqp1aa and -7 in spermatocytes and spermatids, was also directly stimulated by rLh. These results reveal a complex gonadotropic control of aquaporin expression during seabream germ cell development, apparently involving both androgen-dependent and independent pathways, which may assure the fine tuning of aquaporin-mediated fluid secretion and absorption mechanisms in the seabream testis.  相似文献   
97.
The basidiomycete Ustilago scitaminea Sydow, which causes sugarcane smut disease, has been spreading throughout Africa and America since the 1940s. The genetic diversity and structure of different populations of this fungus worldwide was investigated using microsatellites. A total of 142 single-teliospore were isolated from 77 distinct whips (sori) collected in 15 countries worldwide. Mycelium culture derived from on generation of selfing of these single teliospores were analysed for their polymorphisms at 17 microsatellite loci. All these strains but one were homozygous at all loci, indicating that selfing is likely the predominant reproductive mode of U. scitaminea. The genetic diversity of either American or African U. scitaminea populations was found to be extremely low and all strains belong to a single lineage. This lineage was also found in some populations of Asia, where most U. scitaminea genetic diversity was detected, suggesting that this fungal species originated from this region. The strong founder effect observed in U. scitaminea African and American populations suggests that the fungus migrated from Asia to other continents on rare occasions through movement of infected plant material.  相似文献   
98.

Background  

Computational prediction methods are currently used to identify genes in prokaryote genomes. However, identification of the correct translation initiation sites remains a difficult task. Accurate translation initiation sites (TISs) are important not only for the annotation of unknown proteins but also for the prediction of operons, promoters, and small non-coding RNA genes, as this typically makes use of the intergenic distance. A further problem is that most existing methods are optimized for Escherichia coli data sets; applying these methods to newly sequenced bacterial genomes may not result in an equivalent level of accuracy.  相似文献   
99.
100.
Ancient asymmetries in the evolution of flowers   总被引:1,自引:0,他引:1  
Dorsoventral asymmetry in flowers is thought to have evolved many times independently as a specialized adaptation to animal pollinators. To understand how such a complex trait could have arisen repeatedly, we have compared the expression of a gene controlling dorsoventral asymmetry in Antirrhinum with its counterpart in Arabidopsis, a distantly related species with radially symmetrical flowers. We found that the Arabidopsis gene is expressed asymmetrically in floral meristems, even though they are destined to form symmetrical flowers. This suggests that, although the flowers of the common ancestor were probably radially symmetrical, they may have had an incipient asymmetry, evident at the level of early gene activity, which could have been recruited many times during evolution to generate asymmetric flowers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号