首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57903篇
  免费   4595篇
  国内免费   4506篇
  67004篇
  2024年   142篇
  2023年   789篇
  2022年   1851篇
  2021年   3045篇
  2020年   2081篇
  2019年   2504篇
  2018年   2345篇
  2017年   1807篇
  2016年   2546篇
  2015年   3629篇
  2014年   4385篇
  2013年   4438篇
  2012年   5291篇
  2011年   4766篇
  2010年   2885篇
  2009年   2599篇
  2008年   2938篇
  2007年   2637篇
  2006年   2263篇
  2005年   1887篇
  2004年   1509篇
  2003年   1426篇
  2002年   1072篇
  2001年   909篇
  2000年   889篇
  1999年   811篇
  1998年   502篇
  1997年   455篇
  1996年   478篇
  1995年   424篇
  1994年   414篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   211篇
  1987年   194篇
  1986年   177篇
  1985年   156篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   46篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Fair-balance paradox, star-tree paradox, and Bayesian phylogenetics   总被引:1,自引:0,他引:1  
The star-tree paradox refers to the conjecture that the posterior probabilities for the three unrooted trees for four species (or the three rooted trees for three species if the molecular clock is assumed) do not approach 1/3 when the data are generated using the star tree and when the amount of data approaches infinity. It reflects the more general phenomenon of high and presumably spurious posterior probabilities for trees or clades produced by the Bayesian method of phylogenetic reconstruction, and it is perceived to be a manifestation of the deeper problem of the extreme sensitivity of Bayesian model selection to the prior on parameters. Analysis of the star-tree paradox has been hampered by the intractability of the integrals involved. In this article, I use Laplacian expansion to approximate the posterior probabilities for the three rooted trees for three species using binary characters evolving at a constant rate. The approximation enables calculation of posterior tree probabilities for arbitrarily large data sets. Both theoretical analysis of the analogous fair-coin and fair-balance problems and computer simulation for the tree problem confirmed the existence of the star-tree paradox. When the data size n --> infinity, the posterior tree probabilities do not converge to 1/3 each, but they vary among data sets according to a statistical distribution. This distribution is characterized. Two strategies for resolving the star-tree paradox are explored: (1) a nonzero prior probability for the degenerate star tree and (2) an increasingly informative prior forcing the internal branch length toward zero. Both appear to be effective in resolving the paradox, but the latter is simpler to implement. The posterior tree probabilities are found to be very sensitive to the prior.  相似文献   
992.
Isocitrate dehydrogenase (IDH) has been studied extensively due to its central role in the Krebs cycle, catalyzing the oxidative NAD(P)(+)-dependent decarboxylation of isocitrate to alpha-ketoglutarate and CO(2). Here, we present the first crystal structure of IDH from a psychrophilic bacterium, Desulfotalea psychrophila (DpIDH). The structural information is combined with a detailed biochemical characterization and a comparative study with IDHs from the mesophilic bacterium Desulfitobacterium hafniense (DhIDH), porcine (PcIDH), human cytosolic (HcIDH) and the hyperthermophilic Thermotoga maritima (TmIDH). DpIDH was found to have a higher melting temperature (T(m)=66.9 degrees C) than its mesophilic homologues and a suboptimal catalytic efficiency at low temperatures. The thermodynamic activation parameters indicated a disordered active site, as seen also for the drastic increase in K(m) for isocitrate at elevated temperatures. A methionine cluster situated at the dimeric interface between the two active sites and a cluster of destabilizing charged amino acids in a region close to the active site might explain the poor isocitrate affinity. On the other hand, DpIDH was optimized for interacting with NADP(+) and the crystal structure revealed unique interactions with the cofactor. The highly acidic surface, destabilizing charged residues, fewer ion pairs and reduced size of ionic networks in DpIDH suggest a flexible global structure. However, strategic placement of ionic interactions stabilizing the N and C termini, and additional ionic interactions in the clasp domain as well as two enlarged aromatic clusters might counteract the destabilizing interactions and promote the increased thermal stability. The structure analysis of DpIDH illustrates how psychrophilic enzymes can adjust their flexibility in dynamic regions during their catalytic cycle without compromising the global stability of the protein.  相似文献   
993.
Advances in SELEX and application of aptamers in the central nervous system   总被引:4,自引:0,他引:4  
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a screening technique that involves the progressive selection of highly specific ligands by repeated rounds of partition and amplification from a large combinatorial nucleic acid library. The products of the selection are called aptamers, which are short single stranded DNA or RNA molecules, binding with high affinity, attributed to their specific three-dimensional shapes, to a large variety of targets, ranging from small molecules to complex mixtures. Various improvement of the original SELEX method described in 1990 have been obtained recently, such as capillary electrophoresis SELEX, Toggle-SELEX, Tailored-SELEX, Photo-SELEX, and others. These new variants greatly shorten time of selection and improve aptamer affinity and specificity. Such aptamers have great potential as detecting and/or diagnostic reagents. Furthermore, some aptamers specifically inhibit biological functions of targeted proteins, and are considered as potent therapeutic lead structures evaluated in preclinical disease models. Recently, one aptamer has been approved by Food and Drug Administration of US for treating age-related macular degeneration. This review presents recent advances in the field of SELEX with special emphasis on applications of aptamers as analytical, diagnostic and therapeutic tools in the central nervous system.  相似文献   
994.
995.
In the adult heart, a variety of stresses induce re-expression of a fetal gene program in association with myocyte hypertrophy and heart failure. Here we show that histone deacetylase-2 (Hdac2) regulates expression of many fetal cardiac isoforms. Hdac2 deficiency or chemical histone deacetylase (HDAC) inhibition prevented the re-expression of fetal genes and attenuated cardiac hypertrophy in hearts exposed to hypertrophic stimuli. Resistance to hypertrophy was associated with increased expression of the gene encoding inositol polyphosphate-5-phosphatase f (Inpp5f) resulting in constitutive activation of glycogen synthase kinase 3beta (Gsk3beta) via inactivation of thymoma viral proto-oncogene (Akt) and 3-phosphoinositide-dependent protein kinase-1 (Pdk1). In contrast, Hdac2 transgenic mice had augmented hypertrophy associated with inactivated Gsk3beta. Chemical inhibition of activated Gsk3beta allowed Hdac2-deficient adults to become sensitive to hypertrophic stimulation. These results suggest that Hdac2 is an important molecular target of HDAC inhibitors in the heart and that Hdac2 and Gsk3beta are components of a regulatory pathway providing an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.  相似文献   
996.
997.
Zheng F  Shi XW  Yang GF  Gong LL  Yuan HY  Cui YJ  Wang Y  Du YM  Li Y 《Life sciences》2007,80(4):388-396
This study was designed to investigate the in vitro and in vivo transfection efficiency of chitosan nanoparticles used as vectors for gene therapy. Three types of chitosan nanoparticles [quaternized chitosan -60% trimethylated chitosan oligomer (TMCO-60%), C(43-45 KDa, 87%), and C(230 KDa, 90%)] were used to encapsulate plasmid DNA (pDNA) encoding green fluorescent protein (GFP) using the complex coacervation technique. The morphology, optimal chitosan-pDNA binding ratio and conditions for maximal in vitro transfection were studied. The in vivo transfection was conducted by feeding the chitosan/pDNA nanoparticles to 12 BALB/C-nu/nu nude mice. Both conventional and TMCO-60% could form stable nanoparticles with pDNA. The in vitro study showed the transfection efficiency to be in the following descending order: TMCO-60%>C(43-45 KDa, 87%)>C(230 KDa, 90%). TMCO-60% proved to be the most efficient and the optimal chitosan/pDNA ratio being 3.2:1. In vivo study showed most prominent GPF expression in the gastric and upper intestinal mucosa. GFP expression in the mucosa of the stomach and duodenum, jejunum, ileum, and large intestine were found, respectively, in 100%, 88.9%, 77.8% and 66.7% of the nude mice examined. TMCO-60%/pDNA nanoparticles had better in vitro and in vivo transfection activity than the other two, and with minimal toxicity, which made it a desirable non-viral vector for gene therapy via oral administration.  相似文献   
998.
999.
A series of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydro-quinoxaline moiety were synthesized and evaluated for their antiproliferative activity against five human cancer cell lines (A549, H460, HT-29, MKN-45 and U87MG) in vitro. Most of the tested compounds exhibited more potent inhibitory activities than the positive control foretinib. Compound 1b, 1s and 1t were further examined for their inhibitory activity against c-Met kinase. The most promising compound 1s (with c-Met IC50 value of 1.42 nM) showed remarkable cytotoxicity against A549, H460, HT-29, MKN45 and U87MG cell lines with IC50 values of 0.39 μM, 0.18 μM, 0.38 μM, 0.81 μM, respectively. Their preliminary structure-activity relationships (SARs) study indicated that the replacement of the aromatic ring with the cyclohexane improved their antiproliferative activity.  相似文献   
1000.
Ellagitannin-derived ellagic acid (EA) and colonic metabolite urolithins are functional dietary ingredients for cancer prevention, but the underlying mechanism need elucidation. Mucin-type O-glycosylation, initiated by polypeptide N-acetyl-α-galactosaminyltransferases (ppGalNAc-Ts), fine-tunes multiple biological processes and is closely associated with cancer progression. Herein, we aim to explore how specific tannin-based polyphenols affect tumor behavior of colorectal cancer cells (CRC) by modulating O-glycosylation. Utilizing HPLC-based enzyme assay, we find urolithin D (UroD), EA and gallic acid (GA) potently inhibit ppGalNAc-Ts. In particular, UroD inhibits ppGalNAc-T2 through a peptide/protein-competitive manner with nanomolar affinity. Computational simulations combined with site-directed mutagenesis further support the inhibitors’ mode of action. Moreover, lectin analysis and metabolic labelling reveal that UroD can reduce cell O-glycans but not N-glycans. Transwell experiments prove that UroD inhibits migration and invasion of CRC cells. Our work proves that specific tannin-based polyphenols can potently inhibit ppGalNAc-Ts activity to reduce cell O-glycosylation and lead to lowering the migration and invasion of CRC cells, suggesting that disturbance of mucin-type O-glycosylation is an important mechanism for the function of dietary polyphenols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号