首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   20篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   12篇
  2015年   13篇
  2014年   8篇
  2013年   3篇
  2012年   11篇
  2011年   6篇
  2010年   10篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   10篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
排序方式: 共有209条查询结果,搜索用时 234 毫秒
51.
52.
12S ribosomal RNA (rRNA) gene sequences from a suite of mammalian taxa (13 placentals, 4 marsupials, 1 monotreme), for which phylogenetic relationships are well established based on independent criteria, were employed to study the evolution of this gene. Phylogenetic analysis of 12S sequences produces a phylogeny that agrees with expectations. Base composition provides evidence for directional symmetrical substitution pressure in loops; in stems, base composition is much more even. Rates of nucleotide substitution are lower in stems than loops. Patterns of nucleotide substitution show an overall preference for transitions over transversions, with this difference more profound in stems than loops. Among different transversion pathways, there is a wide range of transformation frequencies. An analysis of compensatory substitutions shows that there is strong evidence for their occurrence and that a weighting factor of 0.61 should be applied in phylogenetic analyses to account for the dependence of mutations at stem positions relative to positions where changes are independent. Among stem variables (i.e., stem length, interaction distance, substitution rates, G+C content, and the percentage of bases that are paired), several significant correlations were discovered, but stem length and interaction distance are uncorrelated with other variables.   相似文献   
53.
We investigated the prevalence and phenotypic variation of Candida species in oral lichen planus (OLP) and the therapeutic implications of our findings. Eighty patients with clinically and histopathologically confirmed cases of OLP (64 non-erosive, 16 erosive) and a control group of 80 healthy individuals with no predisposing factors for oral candidiasis were examined for evidence of Candida infection. Oral swabs and smears were obtained for cytology and culture. Identification, speciation and antifungal susceptibility tests of Candida isolates were performed using an automated microbial identification system. Fifty percent of erosive OLP cases, 28% of non-erosive cases and none of the controls showed evidence of Candida. Candida albicans was found predominantly in non-erosive OLP, while other Candida species were predominate in erosive OLP. Non-Candida albicans isolates (C. glabrata, C. krusei) were resistant to the commonly used antifungals, clotrimazole and fluconazole. Candida infection is common in cases of OLP. We recommend antifungal sensitivity testing prior to antifungal therapy for the erosive form of OLP.  相似文献   
54.
Circular dichroism studies. I. Cytochrome c   总被引:2,自引:0,他引:2  
  相似文献   
55.
56.

Background

Viewed through the micro focus of an interpretive lens, medical anthropology remains mystified because interpretivist explanations seriously downplay the given context in which individual health seeking-behaviours occur. This paper draws upon both the interpretivist and political economy perspectives to reflect on the ethno medical practices within the Korean-Australian community in Sydney.

Methods

We draw on research data collected between 1995 and 1997 for an earlier study of the use of biomedical and traditional medicine by Korean-Australians in Sydney. A total of 120 interviews were conducted with a range of participants, including biomedical doctors, traditional health professionals, Korean community leaders and Korean migrants representing a range of socio-economic backgrounds and migration patterns.

Results and Discussion

First, the paper highlights the extent to which the social location of migrants in a host society alters or restructures their initial cultural practices they bring with them. Second, taking hanbang medicine in the Korean-Australian community as an illustrative case, the paper explores the transformation of the dominant biomedicine in Australia as a result of the influx of ethnomedicine in the era of global capitalism and global movement.

Conclusion

In seeking to explain the popularity and supply of alternative health care, it is important to go beyond the culture of each kind of health care itself and to take into consideration the changes occurring at societal, national and global levels as well as consequential individual response to the changes. New social conditions influence the choice of health care methods, including herbal/alternative medicine, health foods and what are often called New Age therapies.  相似文献   
57.

Background  

Adverse drug reactions (ADRs) are now recognized as an important cause of hospital admissions, with a proportion ranging from 0.9–7.9%. They also constitute a significant economic burden. We thus aimed at determining the prevalence and the economic burden of ADRs presenting to Medical Emergency Department (ED) of a tertiary referral center in India  相似文献   
58.
EMBO J 31 13, 2852–2868 (2012); published online May292012Together with the proteasome, autophagy is one of the major catabolic pathways of the cell. In response to cellular needs or environmental cues, this transport route targets specific structures for degradation into the mammalian lysosomes or the yeast and plant vacuoles. The mechanisms allowing exclusive autophagic elimination of unwanted structures are currently the object of intensive investigations. The emerging picture is that there is a series of autophagy receptors that determines the specificity of the different selective types of autophagy. How cargo binding and recognition is regulated by these receptors, however, is largely unknown. In their study, Motley et al (2012) have shed light into the molecular principles underlying the turnover of excess peroxisomes in the budding yeast Saccharomyces cerevisiae.Peroxisomes perform a series of crucial functions and their number is regulated in response to the metabolic demands of the cell. After proliferation and when no more required, a selective type of autophagy called pexophagy degrades superfluous peroxisomes (Manjithaya et al, 2010). This turnover allows the cell to save the energy required for the maintenance of excess organelles and to generate metabolites that can be used to carry out other functions. Like all selective types of autophagy, pexophagy relies on the conserved core of the autophagy-related (Atg) machinery, but also requires additional proteins that confer specificity of the pathway such as cargo selection and membrane dynamics (Manjithaya et al, 2010). It is still unclear, however, which peroxisomal protein allows the recognition of peroxisomes by the autophagosomes. Although Pex3 and Pex14 have previously been indicated as possible suspects (Bellu et al, 2001, 2002; Farre et al, 2008), their specific contribution to pexophagy was difficult to establish. Deletion of either PEX3 or PEX14, as well as most other PEX genes, leads to defects in peroxisome biogenesis, which makes the dissection of their contribution to peroxisome degradation very difficult to assess. Motley et al (2012) have elegantly exploited S. cerevisiae genetics to isolate pex3 alleles specifically impaired in pexophagy and could thus demonstrate that Pex3 (and not Pex14) mediates the selective engulfment of peroxisomes by autophagosomes. In support to this result, the authors have also identified a new protein, Atg36, which binds Pex3 (Figure 1). Importantly, Atg36 interacts with Atg11, an autophagy adaptor involved in numerous selective types of autophagy in yeast, thereby bringing peroxisomes to the site where autophagosomes will be generated and coordinating the activation of the Atg machinery at this location (Kim et al, 2001; Reggiori et al, 2005; Monastyrska et al, 2008). Atg36, however, is only present in S. cerevisiae and related yeasts. Methylotrophic yeasts, in contrast, appear to have a different protein with the same properties, Atg30 (Farre et al, 2008). It is unclear, however, whether Atg30 is the functional counterpart of Atg36 because these two proteins do not display similarities in their amino-acid sequence.Open in a separate windowFigure 1Schematic representation for a putative Pex3 checkpoint. The peroxisomal integral membrane protein Pex3 acts as a master regulator to determine peroxisome fate. Organelle abundance is regulated by formation of new organelles, and their subsequent segregation (inheritance) and degradation. A new paradigm has been uncovered, whereby Pex3 controls peroxisome abundance through the regulated binding to specific co-factors. At the endoplasmic reticulum (ER), together with Pex19, it initiates biogenesis of new peroxisomes. At the peroxisomal membrane, it ensures that both mother and daughter cells obtain the correct number of peroxisomes, whereas when the organelles become dispensable, Pex3 can initiate their selective degradation. To keep peroxisomes in the mother cell during cell division, Pex3 associates with Inp1 and tether peroxisomes to cortical actin patches. Under pexophagy-inducing conditions, Pex3 binds the newly identified pexophagy factor Atg36 and delivers peroxisomes to the site of autophagosome formation for subsequent degradation into the vacuole.While it is unmistakable that Atg36 (and Atg30) is essential for pexophagy, it remains unclear whether this protein is an autophagy receptor. This class of molecules has four characteristics (Kraft et al, 2010). First, each autophagy receptor binds a specific cargo. Second, they often interact with adaptor proteins, which function as scaffolds that bring the cargo–receptor complex in contact with the core Atg machinery to allow the specific sequestration of the cargo. Third, they possess at least one LC3-interacting region (LIR) motif that enables them to interact with the LC3/Atg8 pool present in the interior autophagomes and assures the hermetic enwrapping of the cargo into these vesicles. Fourth, autophagy receptors are degraded in the lysosome/vacuole together with the cargo that they bind to. While Atg36 (and Atg30) binds both the cargo and the adaptor protein Atg11, this protein does not appear to be turned over in the vacuole during pexophagy and a LIR motif has not been pinpointed yet. Consequently, it is unclear whether Atg36 is a new type of autophagy receptor or acts together with a not yet identified autophagy receptor involved in pexophagy.A very interesting concept emerging from the work of Motley et al (2012) is that a single protein, that is, Pex3, could be the central regulator of peroxisome homoeostasis (Figure 1). Pex3 is involved in peroxisome biogenesis, segregation and degradation (Bellu et al, 2002; Hoepfner et al, 2005; Farre et al, 2008; Munck et al, 2009; Ma et al, 2011). As a result, the cell could regulate peroxisome abundance by modulating Pex3 function and/or its array of interactions. In this context, it would be particularly interesting to determine whether Pex3 is also the decision maker of a quality control mechanism that eliminates peroxisomes when not correctly assembled and thus dysfunctional, or when not accurately distributed during cell division. Clearly, additional experiments are needed to understand how Pex3 regulates peroxisome homoeostasis, but this protein and this organelle could represent a convenient system to unveil the principles that regulate the steady-state level of other subcellular compartments.  相似文献   
59.
60.
The leptin system regulates body fat mass through a feedback loop between adipose tissue and the hypothalamus. To test if leptin responsiveness may be regulated we assayed hypothalamic response to leptin during the estrous cycle; when changes in food intake are known to occur. Immature rats were treated with pregnant mare’s serum gonadotropin (PMSG) to induce synchronized follicular development, ovulation and corpus luteum formation. Leptin response was estimated by measuring the in vitro induction of tis11, a primary response gene activated by STAT3-dependent cytokines in hypothalamic explants after leptin stimulation. In addition, mRNA levels of the suppressor cytokine signaling-3 (SOCS-3), a possible mediator of leptin resistance, were analyzed. Serum leptin levels did not change between days 2 and day 3 (corresponding to proestrus and estrus, respectively) but the response to leptin was higher on day 2 than on day 3 (p=0.05). Food intake displayed a tendency towards downregulation between day 1 and day 2 (p=0.057), and a tendency towards upregulation between day 2 and day 3 (p=0.072), although the body weight increased on day of the study (p<0.0001). There was no significant difference in hypothalamic expression of SOCS-3 between day 2 and day 3. In conclusion, we have shown that leptin responsiveness changes during a hormonally induced estrous cycle in rats. Our data suggest that a change in the hypothalamic response to leptin may cause the cyclic feeding behavior seen in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号