首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   20篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   8篇
  2018年   6篇
  2017年   4篇
  2016年   12篇
  2015年   13篇
  2014年   8篇
  2013年   3篇
  2012年   11篇
  2011年   6篇
  2010年   10篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   10篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
131.
132.

Background

Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2 -L distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations.

Results

The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm.

Conclusions

The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems.  相似文献   
133.
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.Understanding how the immune system combats influenza virus infection and how the virus can affect the immune system is crucial to predicting and designing prophylactic and therapeutic strategies against the infection (58). Antigenic shift and antigenic drift alter the degree to which preexisting immunity can control the virus. These factors also influence whether different arms of the adaptive immune system can cross-react against new strains of the virus. For example, shifts of the hemagglutinin (HA) and neuraminidase (NA) protein sequences limit the ability of antibodies to neutralize new variants of the virus and may make cross-reactive T-cell responses to conserved viral proteins more important. Other viral proteins, such as NS1, affect both the induction of type I interferon as well as the susceptibility of infected cells to interferon-mediated inhibition of viral gene expression (43). The efficiencies of viral replication and cell-to-cell viral spread are altered by mutations in the viral matrix and polymerase genes, while the survival of infected cells can be altered by the viral PB1-F2 protein. These attributes are influenced by mutations in the viral matrix (50, 51) and polymerase (30, 69) genes, while the survival of infected cells can be altered by the viral PB1-F2 protein (17). The multigenic aspect of influenza virus pathogenesis makes experimental prediction difficult and time-consuming. Computer simulation tools would be useful to independently dissect the potential contribution and relative importance of each factor or to investigate unexpected scenarios that are difficult to replicate experimentally.Mathematical models and computer simulations have been widely used to study viral dynamics and immune responses to viral infections, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses (SIV), lymphocytic choriomeningitis virus (19, 55, 60, 61), and influenza A virus (3, 7, 8, 13, 34, 35, 52). More complex compartmental models of the immune system (4, 23) and models incorporating differential delay equations (21, 48, 68) have been used to better reflect the time that cells reside in a particular compartment or the duration of transit between compartments. In this study, we sought to develop a two-compartment mathematical model to assess the individual contributions of antigen presentation and activation of naïve T and B cells by antigen-presenting cells (APC), CD4 T-cell help, CD8 T-cell-mediated cytotoxicity, B cells, and antibody to control influenza A virus (IAV) infection and to explore the influence of anatomical location. We developed a model which represented published experimental findings on primary influenza virus infection. More importantly, the model was used to explore alternative structures for interactions between virus and immune cells, for example, comparing virus kinetics when antigen delivery and immune cell priming occurred through direct interaction of virus and immune cells or through a cellular intermediate. The model predicts that, under some circumstances, changes affecting antigen presentation more strongly impacted viral kinetics than other viral or immune factors (28, 73, 75, 78). This model highlights the importance of the assumptions used to synthesize a model and gaps in our understanding of the immune response regulating primary influenza virus infection. We discuss the implications of these findings for future influenza virus research and theories of influenza virus virulence based on influenza virus-immune system interactions.  相似文献   
134.

Background  

The EVIDENCE (EVidence of Interferon Dose-response: European North American Comparative Efficacy) study was an international, randomized, open-label, assessor-blinded, parallel-group study assessing the efficacy and tolerability of interferon (IFN) beta-1a, 44 mcg subcutaneously (sc) three times weekly (tiw), and IFN beta-1a, 30 mcg intramuscularly (im) once weekly (qw), in patients with relapsing-remitting multiple sclerosis (RRMS). The aim of this analysis was to assess whether reductions in T2 burden of disease (BOD) were greater for patients receiving IFN beta-1a, 44 mcg sc tiw, than for those treated with IFN beta-1a, 30 mcg im qw, and to assess the impact of neutralizing antibodies (NAbs).  相似文献   
135.
The cytochrome P-450 4A (CYP4A)-derived arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) affects renal tubular and vascular functions and has been implicated in the control of arterial pressure. We examined the effect of antisense oligonucleotide (ODN) to CYP4A1, the low K(m) arachidonic acid omega-hydroxylating isoform, on vascular 20-HETE synthesis, vascular reactivity, and blood pressure in the spontaneously hypertensive rat (SHR). Administration of CYP4A1 antisense ODN decreased mean arterial blood pressure from 137 +/- 3 to 121 +/- 4 mmHg (P < 0.05) after 5 days of treatment, whereas treatment with scrambled antisense ODN had no effect. Treatment with CYP4A1 antisense ODN reduced the level of CYP4A-immunoreactive proteins along with 20-HETE synthesis in mesenteric arterial vessels. Mesenteric arteries from rats treated with antisense ODN exhibited decreased sensitivity to the constrictor action of phenylephrine (EC(50) 0.69 +/- 0.17 vs. 1.77 +/- 0.40 microM). Likewise, mesenteric arterioles from antisense ODN-treated rats revealed attenuation of myogenic constrictor responses to increases of transmural pressure. The decreased vascular reactivity and myogenic responses were reversible with the addition of 20-HETE. These data suggest that CYP4A1-derived 20-HETE facilitates myogenic constrictor responses in the mesenteric microcirculation and contributes to pressor mechanisms in SHR.  相似文献   
136.

Background  

We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development.  相似文献   
137.
Lake Ichkeul in northern Tunisia is a Ramsar site, a MAB Biosphere Reserve and a UNESCO World Heritage Site. The system is one of the most important coastal wetlands in North Africa, especially as an over-wintering area for migratory birds, particularly Palaearctic waterfowl. The present study was aimed at diagnosing the status of fish species in Lake Ichkeul and documenting their annual and seasonal occurrence within the system. Fish samples were collected monthly at 22 sites from March 2011 to April 2012 using a variety of gears, including a dragnet, gillnet, trammelnet, frynet and beach-seine. Temperature and salinity measurements were taken at each site, while fishes were obtained from only 11 sites, representing mainly lacustrine stations. A total of 18 fish species belonging to 14 genera and 12 families were identified, with Mugilidae dominating with four species, followed by Syngnathidae with three species. This study represents a relative recovery in terms of fish species richness, since only 13 species were recorded here between 2003 and 2007. However, the numbers of fish caught, especially of the commercial taxa, seem to have declined in recent years, and the number of species currently present is much lower than that of several decades ago. Increasing human pressures, particularly reductions in catchment freshwater inputs, a breakdown in ecosystem connectivity, pollution and over-fishing appear to be the principal causes for the decline in fish abundance and diversity.  相似文献   
138.
We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.  相似文献   
139.
Propagation of long terminal repeat (LTR)-bearing retrotransposons and retroviruses requires integrase (IN, EC 2.7.7.-), encoded by the retroelements themselves, which mediates the insertion of cDNA copies back into the genome. An active retrotransposon family, BARE-1, comprises approximately 7% of the barley (Hordeum vulgare subsp. vulgare) genome. We have generated models for the secondary and tertiary structure of BARE-1 IN and demonstrate their similarity to structures for human immunodeficiency virus 1 and avian sarcoma virus INs. The IN core domains were compared for 80 clones from 28 Hordeum accessions representative of the diversity of the genus. Based on the structural model, variations in the predicted, aligned translations from these clones would have minimal structural and functional effects on the encoded enzymes. This indicates that Hordeum retrotransposon IN has been under purifying selection to maintain a structure typical of retroviral INs. These represent the first such analyses for plant INs.   相似文献   
140.
Higher plant plasma membranes carry receptors of different affinity for the phytotoxin fusicoccin. Reception of fusicoccin involves proteins belonging to the highly conserved 14-3-3 family, but the complete structure of the fusicoccin receptor (FCR) is unknown. Using radiation inactivation analysis, we estimated the molecular masses of low-affinity and high-affinity FCR at 63 +/- 7 and 130 +/- 15 kD, respectively. The dose dependences of receptor inactivation indicate that microsomal specimens contain "silent" FCRs of 420 +/- 90 kD in amounts commensurate with that of the active FCRs. Both low- and high-affinity FCRs are inactivated by hydrolytic enzymes from the outer surface of the plasma membrane, and impairment of protoplast integrity causes an irreversible transition of the low-affinity binding site into the high-affinity one. A scheme is proposed for the organization of different types of FCR in the plasma membrane, implying that the membrane affinity for fusicoccin reflects the interaction between proteins in the FCR complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号