首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   109篇
  国内免费   26篇
  2023年   10篇
  2022年   17篇
  2021年   21篇
  2020年   16篇
  2019年   15篇
  2018年   26篇
  2017年   9篇
  2016年   31篇
  2015年   47篇
  2014年   42篇
  2013年   79篇
  2012年   72篇
  2011年   74篇
  2010年   45篇
  2009年   37篇
  2008年   41篇
  2007年   31篇
  2006年   30篇
  2005年   29篇
  2004年   28篇
  2003年   20篇
  2002年   23篇
  2001年   25篇
  2000年   24篇
  1999年   25篇
  1998年   14篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   11篇
  1991年   17篇
  1990年   18篇
  1989年   17篇
  1988年   11篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1983年   4篇
  1979年   6篇
  1977年   14篇
  1976年   13篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
  1971年   4篇
  1968年   5篇
  1967年   4篇
  1965年   3篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
81.
82.

Background

Tumoral heterogeneity is a major determinant of resistance in solid tumors. FDG-PET/CT can identify early during chemotherapy non-responsive lesions within the whole body tumor load. This prospective multicentric proof-of-concept study explores intra-individual metabolic response (mR) heterogeneity as a treatment efficacy biomarker in chemorefractory metastatic colorectal cancer (mCRC).

Methods

Standardized FDG-PET/CT was performed at baseline and after the first cycle of combined sorafenib (600mg/day for 21 days, then 800mg/day) and capecitabine (1700 mg/m²/day administered D1-14 every 21 days). MR assessment was categorized according to the proportion of metabolically non-responding (non-mR) lesions (stable FDG uptake with SUVmax decrease <15%) among all measurable lesions.

Results

Ninety-two patients were included. The median overall survival (OS) and progression-free survival (PFS) were 8.2 months (95% CI: 6.8–10.5) and 4.2 months (95% CI: 3.4–4.8) respectively. In the 79 assessable patients, early PET-CT showed no metabolically refractory lesion in 47%, a heterogeneous mR with at least one non-mR lesion in 32%, and a consistent non-mR or early disease progression in 21%. On exploratory analysis, patients without any non-mR lesion showed a significantly longer PFS (HR 0.34; 95% CI: 0.21–0.56, P-value <0.001) and OS (HR 0.58; 95% CI: 0.36–0.92, P-value 0.02) compared to the other patients. The proportion of non-mR lesions within the tumor load did not impact PFS/OS.

Conclusion

The presence of at least one metabolically refractory lesion is associated with a poorer outcome in advanced mCRC patients treated with combined sorafenib-capecitabine. Early detection of treatment-induced mR heterogeneity may represent an important predictive efficacy biomarker in mCRC.

Trial Registration

ClinicalTrials.gov NCT01290926  相似文献   
83.

Background

[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been widely used in oncologic procedures such as tumor diagnosis and staging. However, false-positive rates have been high, unacceptable and mainly caused by inflammatory lesions. Misinterpretations take place especially when non-subcutaneous inflammations appear at the tumor site, for instance in the lung. The aim of the current study is to evaluate the use of dynamic PET imaging procedure to differentiate in situ and subcutaneous non-small cell lung carcinoma (NSCLC) from inflammation, and estimate the kinetics of inflammations in various locations.

Methods

Dynamic FDG-PET was performed on 33 female mice inoculated with tumor and/or inflammation subcutaneously or inside the lung. Standardized Uptake Values (SUVs) from static imaging (SUVmax) as well as values of influx rate constant (Ki) of compartmental modeling from dynamic imaging were obtained. Static and kinetic data from different lesions (tumor and inflammations) or different locations (subcutaneous, in situ and spontaneous group) were compared.

Results

Values of SUVmax showed significant difference in subcutaneous tumor and inflammation (p<0.01), and in inflammations from different locations (p<0.005). However, SUVmax showed no statistical difference between in situ tumor and inflammation (p = 1.0) and among tumors from different locations (subcutaneous and in situ, p = 0.91). Values of Ki calculated from compartmental modeling showed significant difference between tumor and inflammation both subcutaneously (p<0.005) and orthotopically (p<0.01). Ki showed also location specific values for inflammations (subcutaneous, in situ and spontaneous, p<0.015). However, Ki of tumors from different locations (subcutaneous and in situ) showed no significant difference (p = 0.46).

Conclusion

In contrast to static PET based SUVmax, both subcutaneous and in situ inflammations and malignancies can be differentiated via dynamic FDG-PET based Ki. Moreover, Values of influx rate constant Ki from compartmental modeling can offer an assessment for inflammations at different locations of the body, which also implies further validation is necessary before the replacement of in situ inflammation with its subcutaneous counterpart in animal experiments.  相似文献   
84.

Objectives

Positive affect (PA) plays a crucial role in the development, course, and recovery of depression. Recently, we showed that a therapeutic application of the experience sampling method (ESM), consisting of feedback focusing on PA in daily life, was associated with a decrease in depressive symptoms. The present study investigated whether the experience of PA increased during the course of this intervention.

Design

Multicentre parallel randomized controlled trial. An electronic random sequence generator was used to allocate treatments.

Settings

University, two local mental health care institutions, one local hospital.

Participants

102 pharmacologically treated outpatients with a DSM-IV diagnosis of major depressive disorder, randomized over three treatment arms.

Intervention

Six weeks of ESM self-monitoring combined with weekly PA-focused feedback sessions (experimental group); six weeks of ESM self-monitoring combined with six weekly sessions without feedback (pseudo-experimental group); or treatment as usual (control group).

Main outcome

The interaction between treatment allocation and time in predicting positive and negative affect (NA) was investigated in multilevel regression models.

Results

102 patients were randomized (mean age 48.0, SD 10.2) of which 81 finished the entire study protocol. All 102 patients were included in the analyses. The experimental group did not show a significant larger increase in momentary PA during or shortly after the intervention compared to the pseudo-experimental or control groups (χ2 (2) =0.33, p=.846). The pseudo-experimental group showed a larger decrease in NA compared to the control group (χ2 (1) =6.29, p=.012).

Conclusion

PA-focused feedback did not significantly impact daily life PA during or shortly after the intervention. As the previously reported reduction in depressive symptoms associated with the feedback unveiled itself only after weeks, it is conceivable that the effects on daily life PA also evolve slowly and therefore were not captured by the experience sampling procedure immediately after treatment.

Trial Registration

Trialregister.nl/trialreg/index.asp. NTR1974  相似文献   
85.
In contrast to the macro/mesozooplankton, microzooplankton has received much less attention in ecosystem models. In many modeling studies, microzooplankton has been either entirely neglected, or else, data were often not available for validation, or agreement between the observed and the simulated abundances was rather poor. In this study, we compare the simulation results from several alternative models considering different formulations of ciliate growth in a hydrodynamically driven 1D nutrient-phytoplankton–multiple zooplankton model, with long-term datasets from the deep, monomictic Lake Constance. We show that the parameterization of the limitation of ciliate growth with a constant specific mortality rate and/or predation by copepods leads to uncontrolled ciliate blooms. In contrast, implementation of a density-dependent mortality rate enables reproduction of algae–ciliate dynamics over a variety of environmental settings encompassed by the 14-year dataset spanning 21 years in a lake undergoing oligotrophication. Considering the numerous processes that can be responsible for the dampening of ciliate blooms, our findings suggest that employing a simple density-dependent mortality term offers a pragmatic solution for the challenge of including the microzooplankton, characterized by an overwhelming complexity of trophic interactions, in ecosystem models.  相似文献   
86.
Zhang YY  Zan LS  Wang HB 《遗传》2010,32(11):1166-1174
为了筛选秦川牛公牛和阉牛肌肉组织差异表达的基因,探讨二者肉质差异的分子生物学机理,文章利用Affymetrix公司生产的牛基因组芯片技术,分别检测了3头36月龄秦川牛公牛与阉牛背最长肌肌肉组织的mRNA表达水平变化;运用Significance Analysis of Microarrays(SAM)法对秦川牛公牛和阉牛基因表达谱进行了差异分析;并通过分子注释系统平台(MAS2.0)对差异表达基因进行了功能富集类分析和调控通路分析;最后应用实时定量PCR技术对部分差异表达基因进行了验证。基因表达谱分析结果显示,在36月龄秦川牛的肌肉组织中,共检测到约11000个探针,代表大约10000个基因。共筛选出差异表达基因143条,主要涉及胶原纤维的组织和合成、细胞粘附、细胞生长调控、泛素介导的蛋白分解代谢和横纹肌收缩等生物学过程;在分子注释系统数据库中注释到的显著调控通路为细胞外基质受体反应、细胞通讯、焦点粘连和紧密连接等;所验证的差异表达基因的荧光定量PCR结果与芯片结果基本一致。结合已有的文献报道,文章初步认为ECM受体反应、细胞通讯、焦点粘连、紧密接头等调控通路及COL3A1、COL1A1、COL1A2、SPP1、FBN1、MMP2、ECM1、MYH3、MYH8、S100A4、ASPN、CFD等基因可能是参与调控秦川牛阉割前后肉质性状差异的重要调控通路和基因。此外,还筛选出一些尚未在GenBank上登陆的序列,推测可能是未知的新基因,它们在牛肉质代谢过程中的作用还需进一步的研究证明。  相似文献   
87.
Six Y-STR loci (UMN0929, UMN0108, UMN0920, INRA124, UMN2404 and UMN0103) were analyzed using 576 healthy and unrelated males and 10 females of the Qinchuan cattle population in Chinese Shaanxi Province. Allele frequency, gene diversity, the polymorphic information content, and the number of effective gene were calculated. All loci were in accordance with the Hardy–Weinberg equilibrium (P > 0.05). The population data were compared with published data of other cattle breeds, suggesting that Qinchuan cattle were originated primarily from Bos Taurus. Results are valuable for individual identification, paternity testing, and origin analysis of Qinchuan cattle breed.  相似文献   
88.
Plants can respond quickly and profoundly to changes in their environment. Several species, including Arabidopsis thaliana, are capable of differential petiole growth driven upward leaf movement (hyponastic growth) to escape from detrimental environmental conditions. Recently, we demonstrated that the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA, explains a major effect Quantitative Trait Locus (QTL) for ethylene-induced hyponastic growth in Arabidopsis. Here, we demonstrate that ERECTA controls the hyponastic growth response to low light intensity treatment in a genetic background dependent manner. Moreover, we show that ERECTA affects low light-induced hyponastic growth independent of Phytochrome B and Cryptochrome 2 signaling, despite that these photoreceptors are positive regulators of low light-induced hyponastic growth.Key words: hyponastic growth, petiole, Arabidopsis, low light, ERECTA, differential growth, phytochrome B, cryptochrome 2Plants must adjust growth and reproduction to adverse environmental conditions. Among the strategies that plants employ to escape from unfavorable conditions is differential petiole growth-driven upward leaf movement, called hyponastic growth. Arabidopsis thaliana is able to exhibit a marked hyponastic response upon flooding, which is triggered by endogenous accumulation of the gaseous phytohormone ethylene.1 Moreover, a similar response is triggered upon low light intensity perception and in response to supra-optimal temperatures.25 By tilting the leaves to a more vertical position during submergence and shading, the plants restore contact with the atmosphere and light, respectively. The kinetics of the hyponastic growth response induced by the various stimuli is remarkably similar. This led to the hypothesis that shared functional genetic components may be employed to control hyponastic growth. Yet, at least part of the signaling cascades is parallel, as the hormonal control of the response differs between the stimuli. Low light-induced hyponastic growth for example does not require ethylene action.2 Whereas the response to heat is antagonized by this hormone.5 The abiotic stress hormone abscisic acid (ABA) antagonizes ethylene-induced hyponastic growth and stimulates heat-induced hyponastic growth.5,6 Moreover, ethylene-induced hyponasty does not involve auxin action7 whereas both heat- and low light-induced hyponasty require functional auxin signaling and transport components.2,5In our recent paper, published in The Plant Journal,8 we employed Quantitative Trait Locus (QTL) analysis to identify loci involved in the control of ethylene-induced hyponastic petiole growth. By analyzing induced mutants and by complementation analysis of naturally occurring mutant accessions, we found that the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA (ER) is a positive regulator of ethylene-induced hyponastic growth and most likely is causal to one of the identified QTLs. In addition, we demonstrated that the ER dependency is not via ER mediated control of ethylene production or sensitivity.Since low light-induced hyponasty does not require ethylene action,2 ER may be part of the proposed shared signaling cascade leading to hyponastic growth where ethylene and low light signals meet. Therefore, we studied low light intensity-induced hyponasty in various erecta mutants. Moreover, natural occurring er mutant accessions complemented with a functional, Col-0 derived, ER allele were tested. The response of Lan-0 (Lan-0; with functional ER) to low light was indistinguishable from the response of Landsberg erecta (Ler) (Fig. 1A). However, complemented Ler (ER-Ler) showed an enhanced response compared to Ler (Fig. 1B). The response of mutant er105 was slightly attenuated compared to the wild type Columbia-0 (Fig. 1C). Mutant er104, however, showed an indistinguishable hyponastic growth phenotype to low light compared to the wild type Wassilewskija-2 (Ws-2) (Fig. 1D). Complementation of the natural occurring erecta mutant accession Vancouver-0 (Van-0) resulted in an enhanced hyponastic growth response to low light (Fig. 1E), whereas this was not the case for Hiroshima-1 (Hir-1) (Fig. 1F). Together, these data suggest that ER acts as positive regulator of low light-induced hyponastic growth and therefore may be part of the shared signaling cascade towards differential petiole growth. Yet, the effect is strongly dependent on the genetic background since the effects were not observed in every accession tested.Open in a separate windowFigure 1ERECTA involvement in low light-induced hyponasty. Effect of exposure to low light (spectral neutral reduction in light intensity from 200 to 20 µmol m−2 s−1) on the kinetics of hyponastic petiole growth in Arabidopsis thaliana. (A) mutant (circles) Ler and wild type (dashed line) Lan-0, (B) Ler and Ler complemented (ER-; squares) with the Col-0 ERECTA allele (ER-Ler), (C) er105 and Col-0 wild type, (D) er104 and Ws-2 wild type, (E) natural mutant Van-0 and Van-0 complemented with the Col-0 ER allele (ER-Van-0), (F) natural mutant Hir-1 and Hir-1 complemented with the Col-0 ER allele (ER-Hir-1). Petiole angles were measured using time-lapse photography and subsequent image analysis. Data is pairwise subtracted, which corrects for diurnal petiole movement in control conditions. For details on this procedure, growth conditions and materials, transformation protocol, treatments, data acquirement and all analyses see.1,8 Error bars represent standard errors; n ≥ 12.Phytochrome B (PhyB) and Cryptochrome 2 (Cry2) photoreceptor proteins are required for a full induction of low light-induced hyponastic growth.2 We transformed the phyb5 cry2 mutant9 (Ler genetic background) with Col-0 derived ER. This complementation did not restore the ability of phyb5 cry2 to induce hyponastic growth to neither ethylene (data not shown) nor low light conditions (Fig. 2A). Mutant phyb5 cry2 plants have a typical constitutive shade avoidance phenotype, reflected by severely elongated organs. This includes enhanced inflorescence and silique length and thin inflorescences (Fig. 2B-D). Complementation with ER resulted in a significant additional effect on these parameters (Fig. 2B-D). Together, this suggests that ER is not an integral part of PhyB nor Cry2 signaling with respect to (hyponastic) growth. Moreover, PhyB and Cry2 control of plant architecture does not require ER action. Rather, ER seems to mediate growth via genetic interaction with light-reliant growth mechanisms, instead of being downstream of photoreceptor action. Studies on the effects of ER on shade avoidance responses and various hormone responses, including cytokinin and auxin, led to the similar conclusion, suggesting a possible role for ER as a molecular hub coordinating light- and hormone-mediated plant growth.10,11 One could speculate that ER fine-tunes other (than light) environmental clues with light signaling components. A comparable conclusion was drawn previously for gibberellin (GA) reliant growth mechanisms, as er enhanced the negative effect on plant size of the short internode (shi) mutation12 and er represses the positive effect of the spindly mutation in a GA independent manner.13Open in a separate windowFigure 2Effects of ERECTA on light signaling. (A) Effect of exposure to low light (spectral neutral reduction in light intensity from 200 to 20 µmol m−2 s−1) on the kinetics of hyponastic petiole growth of Ler (dashed lines), the photoreceptor double mutant phyb5 cry2 (circles) and this mutant complemented with the Col-0 ERECTA (ER-phyb cry2; squares). For details see legend Figure 1. (B) Plant height, (C) silique length and (D) inflorescence stem thickness of the above mentioned lines. These parameters were measured when the last flower on the plant developed a silique. Plant height was measured from root/shoot junction to inflorescence top. Stem thickness was measured ∼1 cm above the root/shoot junction with a caliper and silique lengths were measured from representative pedicels in the top ∼10 cm of the main inflorescence stem. Error bars represent standard errors; n ≥ 12. Significance levels; *p < 0.05; **p < 0.01; ***p < 0.001; ns = non significant, by Students t-test.  相似文献   
89.
90.
高原低氧免疫损伤及其干预措施的研究   总被引:1,自引:0,他引:1  
目的:探讨高原低氧损伤免疫系统的特征及其可能机制,研究高原低氧免疫损伤的干预措施。方法:测定低氧暴露不同时间小鼠免疫器官指数、外周血和免疫器官T淋巴细胞亚群的变化;观察小鼠免疫器官淋巴细胞凋亡率及小鼠肺脏和肾脏病理学改变。采用预防给药方式,研究中药组方对低氧免疫损伤小鼠的干预作用。结果:①模拟海拔8000m低氧暴露8h后,小鼠胸腺CD4+CD8+细胞数显著下降,CD4+CD8-、CD4-CD8+细胞数显著增加(P0.01);低氧暴露3d后,外周血CD4+细胞明显减少(P0.05),CD4+/CD8+比值显著降低(P0.05),胸腺CD4+CD8+细胞数进一步下降,CD4+CD8-、CD4-CD8+细胞数进一步增加,小鼠脾脏、胸腺淋巴细胞晚期凋亡和坏死率均显著增加(P0.05);低氧暴露6d后,小鼠脾指数显著性增加(P0.01);胸腺指数显著性降低(P0.01),脾CD4+、CD8+细胞数显著降低(P0.01),脾脏和胸腺淋巴细胞晚期凋亡率和坏死率进一步增加(P0.01),活细胞率显著降低(P0.01),脾脏淋巴细胞早期凋亡率显著增加(P0.01)。整个低氧暴露过程中外周血CD8+无显著性变化。②新复方党参、香杞多糖、二者联合应用均能显著增加低氧免疫损伤小鼠外周血CD3+、CD4+、脾脏CD4+的细胞水平(P0.01,P0.05),对脾脏CD8+细胞水平没有显著影响。香杞多糖及其与新复方党参联合应用均能进一步降低胸腺CD4+CD8+,进一步增加CD4+CD8-的细胞水平(P0.01),未见对CD4-CD8+细胞水平的影响;新复方党参对低氧免疫损伤小鼠胸腺没有显著性影响。结论:模拟海拔8000m低氧暴露后小鼠外周发挥免疫作用的淋巴细胞数减少可能与低氧暴露早期淋巴细胞凋亡率和坏死率增加和肺脏淋巴细胞分布增多有关。新复方党参和香杞多糖作为低氧免疫损伤干预措施,具有一定发展前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号