首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2193篇
  免费   137篇
  国内免费   3篇
  2024年   2篇
  2023年   15篇
  2022年   39篇
  2021年   101篇
  2020年   32篇
  2019年   42篇
  2018年   79篇
  2017年   53篇
  2016年   84篇
  2015年   99篇
  2014年   148篇
  2013年   174篇
  2012年   206篇
  2011年   234篇
  2010年   131篇
  2009年   127篇
  2008年   140篇
  2007年   118篇
  2006年   106篇
  2005年   75篇
  2004年   84篇
  2003年   58篇
  2002年   58篇
  2001年   12篇
  2000年   14篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   8篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1983年   6篇
  1979年   4篇
  1978年   4篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1970年   5篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有2333条查询结果,搜索用时 15 毫秒
71.
Children’s daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time.  相似文献   
72.
73.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   
74.
75.
76.
Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.  相似文献   
77.
Metabolomics - Microalgae produce metabolites that could be useful for applications in food, biofuel or fine chemical production. The identification and development of suitable strains require...  相似文献   
78.
79.
80.
Whole‐genome sequencing‐based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next‐generation sequencing (NGS)‐based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR‐01 and CPR‐02. Eleven QTLs in CPR‐01 and six QTLs in CPR‐02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR‐01 using conventional biparental mapping approach were used to compare the efficiency of NGS‐based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR‐01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS‐based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR‐02 population. This study demonstrated the efficiency of NGS‐based BSA as a rapid and cost‐effective method to identify QTLs associated with ascochyta blight in chickpea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号