首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   9篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   3篇
  1971年   5篇
  1966年   2篇
  1963年   1篇
  1962年   2篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
41.
Seven subjects (1 woman) performed an incremental isotonic test on a Kin-Com isokinetic apparatus to determine their maximal oxygen consumption during bilateral knee extensions (Vo(2 sp)). A multisensor thermal probe was inserted into the left vastus medialis (middiaphysis) under ultrasound guidance. The deepest sensor (tip) was located approximately 10 mm from the femur and deep femoral artery (T(mu 10)), with additional sensors located 15 (T(mu 25)) and 30 mm (T(mu 40)) from the tip. Esophageal temperature (T(es)) was measured as an index of core temperature. Subjects rested in an upright seated position for 60 min in an ambient condition of 22 degrees C. They then performed 15 min of isolated bilateral knee extensions (60% of Vo(2 sp)) on a Kin-Com, followed by 60 min of recovery. Resting T(es) was 36.80 degrees C, whereas T(mu 10), T(mu 25), and T(mu 40) were 36.14, 35.86, and 35.01 degrees C, respectively. Exercise resulted in a T(es) increase of 0.55 degrees C above preexercise resting, whereas muscle temperature of the exercising leg increased by 2.00, 2.37, and 3.20 degrees C for T(mu 10), T(mu 25), and T(mu 40), respectively. Postexercise T(es) showed a rapid decrease followed by a prolonged sustained elevation approximately 0.3 degrees C above resting. Muscle temperature decreased gradually over the course of recovery, with values remaining significantly elevated by 0.92, 1.05, and 1.77 degrees C for T(mu 10), T(mu 25), and T(mu 40), respectively, at end of recovery (P < 0.05). These results suggest that the transfer of residual heat from previously active musculature may contribute to the sustained elevation in postexercise T(es).  相似文献   
42.
Many Golgi glycosyltransferases are type II membrane proteins which are cleaved to produce soluble forms that are released from cells. Cho and Cummings recently reported that a soluble form of alpha1, 3- galactosyltransferase was comparable to its membrane bound counterpart in its ability to galactosylate newly synthesized glycoproteins (Cho,S.K. and Cummings,R.D. (1997) J. Biol. Chem., 272, 13622-13628). To test the generality of their findings, we compared the activities of the full length and soluble forms of two such glycosyltransferases, ss1,4 N-Acetylgalactosaminyltransferase (GM2/GD2/ GA2 synthase; GalNAcT) and beta galactoside alpha2,6 sialyltransferase (alpha2,6-ST; ST6Gal I), for production of their glycoconjugate products in vivo . Unlike the full length form of GalNAcT which produced ganglioside GM2 in transfected cells, soluble GalNAcT did not produce detectable GM2 in vivo even though it possessed in vitro GalNAcT activity comparable to that of full length GalNAcT. When compared with cells expressing full length alpha2,6-ST, cells expressing a soluble form of alpha2,6-ST contained 3-fold higher alpha2,6-ST mRNA levels and secreted 7-fold greater alpha2,6-ST activity as measured in vitro , but in striking contrast contained 2- to 4-fold less of the alpha2,6-linked sialic acid moiety in cellular glycoproteins in vivo . In summary these results suggest that unlike alpha1,3-galactosyltransferase the soluble forms of these two glycosyltransferases are less efficient at glycosylation of membrane proteins and lipids in vivo than their membrane bound counterparts.   相似文献   
43.
The repression of MetE synthesis in Escherichia coli by vitamin B12 is known to require the MetH holoenzyme (B12-dependent methyltransferase) and the metF gene product. Experiments using trimethoprim, an inhibitor of dihydrofolate reductase, show that the MetF protein is not directly involved in the repression, but that N5-methyltetrahydrofolic acid (N5-methyl-H4-folate), the product of the MetF enzymatic reaction is required. Since the methyl group from N5-methyl-H4-folate is normally transferred to the MetH holoenzyme to form a methyl-B12 enzyme, the present results suggest that a methyl-B12 enzyme is involved in the vitamin B12 repression of metE expression. Other results argue against the possibility that a methyl-B12 enzyme functions in this repression solely by decreasing the cellular level of homocysteine, which is required for MetR activation of metE expression. Experiments with metJ mutants show that the MetJ protein mediates about 50% of the repression of metE expression by B12 but is totally responsible for the regulation of metF expression by vitamin B12.  相似文献   
44.
1. The in vitro metabolism of [3H]benzo[a]pyrene (BP) and [14C]benzo[a]pyrene-7,8-dihydrodiol (BP-7,8-diol) by liver of brown bullhead (Ictalurus nebulosus) was characterized, as was the formation and persistence of BP-DNA adducts in vivo. 2. Compared to rat liver microsomes, bullhead liver microsomes produced relatively larger amounts of BP-7,8-diol (predominantly the [-] enantiomer) and smaller amounts of of BP-7,8-diol (predominantly the [-] enantiomer) and smaller amounts of BP-4,5-diol. 3. BP phase I metabolites were efficiently converted by freshly isolated bullhead hepatocytes to conjugates, predominantly glucuronides. 4. BP-7,8-diol was metabolized by hepatocytes 4-fold more rapidly than was BP and was converted to approximately equal amounts of glucuronides, glutathione conjugates and sulfates. 5. BP-DNA adducts formed in bullhead liver with a lag time of several days and maximum adduct formation at 25-30 days. The major adduct was anti-BPDE-deoxyguanosine.  相似文献   
45.
The N- and ring-hydroxylation of 2-acetamidofluorene were studied with a reconstituted cytochrome P-450 enzyme from microsomal fractions of liver from both control and 3-methylcholanthrene-pretreated rats. Proteinase treatment and Triton X-100 solubilization were two important steps for partial purification of the cytochrome P-450 fraction. Both cytochrome P-450 and NADPH-cytochrome c reductase fractions were required for optimum N- and ring-hydroxylation activity. Hydroxylation activity was determined by the source of cytochrome P-450 fraction; cytochrome P-450 fraction from pretreated animals was severalfold more active than the fraction from controls. Formation of N-hydroxylated metabolites with reconstituted systems from both control and pretreated animals was greater than that with their respective whole microsomal fractions.  相似文献   
46.
We evaluated the impact of non-native rainbow trout Oncorhynchus mykiss on a population of endemic Cedarberg ghost frog Heleophryne depressa in the upper Krom River (Olifants-Doring River Catchment, Cape Fold Ecoregion). We compared H. depressa abundance (using kick-sampling and underwater video analysis) and environmental conditions between sites above and below a waterfall that marks the upper distribution limit of O. mykiss. Heleophryne depressa abundance was significantly greater above the waterfall than that below it, and, because there was no significant difference in measured environmental variables, O. mykiss presence is identified as the most likely explanation for the observed decrease in H. depressa abundance.  相似文献   
47.
E Houben  de Gier JW    van Wijk KJ 《The Plant cell》1999,11(8):1553-1564
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.  相似文献   
48.
Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.  相似文献   
49.
The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer.  相似文献   
50.
beta-(+/-)-2-Aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (BCH) stimulated, in a concentration-dependent manner, the formation of glutamate by mitochondria isolated from rat liver and incubated with 20 mM glutamine. Maximum enhancement was seen with 10 mM BCH while 5 mM leucine was without effect. The initial lag in the rate of glutamate formation was not eliminated by BCH. Preincubation of the mitochondria without glutamine also did not abolish the lag period; to the contrary, it resulted in a progressive deactivation of the glutaminase. The decrease in enzyme activity during the preincubation without glutamine was partially reversed by the addition of either 10 mM BCH or 1.4 mM NH4Cl and was essentially abolished by their combined action. The apparently sigmoid rise in the activity of glutaminase with increasing concentration of glutamine became hyperbolic in the presence of 1.4 mM NH4Cl. BCH stimulated the NH4Cl-activated glutaminase in the entire range of glutamine concentrations studied (2-40 mM) without changing the S50 value. In mitochondria disrupted by repeated cycles of freezing and thawing, the enzymatic activity was maximal even in the absence of BCH. It is postulated that BCH is a potent activator of mitochondrial glutaminase and that manifestation of its action requires intact organelle structure. In addition, it is concluded that BCH-induced stimulation of glutamine catabolism in isolated hepatocytes (Zaleski, J., Wilson, D. F., and Erecinska, M. (1986) J. Biol. Chem. 261, 14082-14090) is the consequence of activation of the mitochondrial glutaminase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号