首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
  2022年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有87条查询结果,搜索用时 21 毫秒
11.
Oral fluids (OF) have been suggested as a source of biomarkers for oral and systemic health, but as with other bio-fluids, the presence of high-abundance proteins interferes with the detection of lower-abundance biomarkers. Here, we compared the performance of four depletion treatments: triple depletion (TD) of amylases, albumins and immunoglobulin G; multiple depletion (MD) of amylases and a panel of 20 proteins, a combination of the two (EMD) and combinatorial peptide ligand library based depletion termed CPLL. TD, MD, EMD and CPLL removed 76%, 83%, 85% and 94% of total proteins, respectively, coupled with increased low abundance protein detection and narrowed dynamic range. 2-DE revealed that all depletion pretreatments successfully clarified areas hampered by high-abundance proteins; however, EMD and CPLL exposed the highest number of proteins. Quantitative MS of EMD samples relative to none treated samples indicated that most of downregulated proteins (>90%) were EMD target proteins. In conclusion, a multiple step EMD and CPLL depletion approaches bring about the highest number of protein detection ability and the best hampered-area clearance. As CPLL requires at least 10 fold more protein starting material, we suggest EMD pretreatment as a new detection tool in instances of low protein starting material.  相似文献   
12.
During slow-wave sleep, brain electrical activity is dominated by the slow (< 1 Hz) electroencephalogram (EEG) oscillations characterized by the periodic transitions between active (or Up) and silent (or Down) states in the membrane voltage of the cortical and thalamic neurons. Sleep slow oscillation is believed to play critical role in consolidation of recent memories. Past computational studies, based on the Hodgkin-Huxley type neuronal models, revealed possible intracellular and network mechanisms of the neuronal activity during sleep, however, they failed to explore the large-scale cortical network dynamics depending on collective behavior in the large populations of neurons. In this new study, we developed a novel class of reduced discrete time spiking neuron models for large-scale network simulations of wake and sleep dynamics. In addition to the spiking mechanism, the new model implemented nonlinearities capturing effects of the leak current, the Ca2+ dependent K+ current and the persistent Na+ current that were found to be critical for transitions between Up and Down states of the slow oscillation. We applied the new model to study large-scale two-dimensional cortical network activity during slow-wave sleep. Our study explained traveling wave dynamics and characteristic synchronization properties of transitions between Up and Down states of the slow oscillation as observed in vivo in recordings from cats. We further predict a critical role of synaptic noise and slow adaptive currents for spike sequence replay as found during sleep related memory consolidation.  相似文献   
13.
Larkov O  Zaks A  Bar E  Lewinsohn E  Dudai N  Mayer AM  Ravid U 《Phytochemistry》2008,69(14):2565-2571
Selected plants within the Origanum, Mentha and Salvia genera, that contain significant amounts of chiral volatile alcohols and their related acetates, exhibit remarkable enantioselectivity of alcohol acetyl transferase (AAT) activity and particularly can discriminate between linalool enantiomers. Origanum dayi AAT produced almost enantiomerically pure (R)-linalyl acetate by enzymatic acetylation of racemic linalool, whereas the closely related O. majorana AAT produced a mixture of (R)- and (S)-linalyl acetate with a ratio of 6:4. V(max) of O. dayi acetylation activity was 30-fold higher for (R)-linalool, whereas in O. majorana no such differences were found.  相似文献   
14.
DNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation. Whereas HJs are present in most HR events in meiosis, it has been proposed that in vegetative cells most HR events occur through intermediates lacking HJs. A recent screen in yeast has shown HJ resolution activity for a protein called Yen1, in addition to the previously known Mus81/Mms4 complex. Yeast strains deleted for both YEN1 and MMS4 show a reduction in growth rate, and are very sensitive to DNA-damaging agents. In addition, we investigate the genetic interaction of yen1 and mms4 with mutants defective in different repair pathways. We find that in the absence of Yen1 and Mms4 deletion of RAD1 or RAD52 have no further effect, whereas additional sensitivity is seen if RAD51 is deleted. Finally, we show that yeast cells are unable to carry out meiosis in the absence of both resolvases. Our results show that both Yen1 and Mms4/Mus81 play important (although not identical) roles during vegetative growth and in meiosis.  相似文献   
15.
Hemifacial microsomia (HFM) is the second most common facial anomaly after cleft lip and palate. The phenotype is highly variable and most cases are sporadic. We investigated the disorder in a large pedigree with five affected individuals spanning eight meioses. Whole-exome sequencing results indicated the absence of a pathogenic coding point mutation. A genome-wide survey of segmental variations identified a 1.3 Mb duplication of chromosome 14q22.3 in all affected individuals that was absent in more than 1000 chromosomes of ethnically matched controls. The duplication was absent in seven additional sporadic HFM cases, which is consistent with the known heterogeneity of the disorder. To find the critical gene in the duplicated region, we analyzed signatures of human craniofacial disease networks, mouse expression data, and predictions of dosage sensitivity. All of these approaches implicated OTX2 as the most likely causal gene. Moreover, OTX2 is a known oncogenic driver in medulloblastoma, a condition that was diagnosed in the proband during the course of the study. Our findings suggest a role for OTX2 dosage sensitivity in human craniofacial development and raise the possibility of a shared etiology between a subtype of hemifacial microsomia and medulloblastoma.  相似文献   
16.
Azospirillum brasilense Cd localization in wheat roots was studied by light microscopy, by scanning, and by transmission electron microscopy.A. brasilense Cd cells were specifically identified immunocytochemically around and within root tissues.A. brasilense Cd cells found both outside and inside inoculated roots were intensively labeled with colloidal gold. In non-axenic cultures other bacterial strains or plant tissue were not labeled, thereby providing a non-interfering background. The roots of axenic grown wheat plants were colonized both externally and internally byA. brasilense Cd after inoculation, whereas non-axenic cultures were colonized by other bacterial strains as well.A. brasilense Cd cells were located on the root surface along the following zones: the root tip, the elongation, and the root-hair zone. However, bacteria were located within the cortex only in the latter two zones. In a number of observations, an electron dense material mediated the binding of bacterial cells to outer surfaces of epidermal cells, or between adjacent bacterial cells.A. brasilense Cd were found in root cortical intercellular spaces, but were not detected in either the endodermal layer or in the vascular system. This study proposes that in addition to root surface colonization,A. brasilense Cd forms intercellular associations within wheat roots.  相似文献   
17.
18.
Enzymatic catalysis in nonaqueous solvents   总被引:39,自引:0,他引:39  
Subtilisin and alpha-chymotrypsin vigorously act as catalysts in a variety of dry organic solvents. Enzymatic transesterifications in organic solvents follow Michaelis-Menten kinetics, and the values of V/Km roughly correlate with solvent's hydrophobicity. The amount of water required by chymotrypsin and subtilisin for catalysis in organic solvents is much less than needed to form a monolayer on its surface. The vastly different catalytic activities of chymotrypsin in various organic solvents are partly due to stripping of the essential water from the enzyme by more hydrophilic solvents and partly due to the solvent directly affecting the enzymatic process. The rate enhancements afforded by chymotrypsin and subtilisin in the transesterification reaction in octane are of the order of 100 billion-fold; covalent modification of the active center of the enzymes by a site-specific reagent renders them catalytically inactive in organic solvents. Upon replacement of water with octane as the reaction medium, the specificity of chymotrypsin toward competitive inhibitors reverses. Both thermal and storage stabilities of chymotrypsin are greatly enhanced in nonaqueous solvents compared to water. The phenomenon of enzymatic catalysis in organic solvents appears to be due to the structural rigidity of proteins in organic solvents resulting in high kinetic barriers that prevent the native-like conformation from unfolding.  相似文献   
19.
A combination of hot water (a rinse at 62 degrees C for 20 s) and conditioning (pre-storage at 16 degrees C for 7 d) treatments synergistically reduced chilling injury development in grapefruit (Citrus paradisi, cv. "Star Ruby") during cold storage at 2 degrees C, suggesting that the treatments may activate different chilling tolerance responses. To study the molecular mechanisms involved, chilling- and conditioning-responsive genes were isolated by polymerase chain reaction (PCR) cDNA subtraction, cDNA libraries were constructed from hot water- and conditioning-treated fruit, and cDNA sequencing was used to identify putative stress-responsive and chilling tolerance genes. PCR cDNA subtraction revealed the identification of 17 chilling-responsive and heat- and conditioning-induced genes, and the expression patterns of 11 additional stress-related genes, antioxidant defensive genes, and genes encoding enzymes involved in membrane lipid modifications were characterized. It was found that hot water and conditioning treatments had little effect on gene expression by themselves, but rather had a priming effect, and enabled the fruit to activate their defence responses after subsequent exposure to chilling. RNA gel blot hybridizations revealed that the expression patterns of eight genes, including HSP19-I, HSP19-II, dehydrin, universal stress protein (USP), EIN2, 1,3;4-beta-D-glucanase, and superoxide dismutase (SOD), were specifically regulated by the heat treatment, and four genes, including fatty acid desaturase2 (FAD2) and lipid transfer protein (LTP), were specifically regulated by the conditioning treatment. Furthermore, four more genes were identified, including a translation initiation factor (SUI1), a chaperonin, and alcohol dehydrogenase (ADH), that were commonly regulated by both heat and conditioning treatments. According to these data, it is suggested that pre-storage heat and conditioning treatments may enhance fruit chilling tolerance by activating different molecular mechanisms. The hot water treatment activates mainly the expression of various stress-related genes, whereas the conditioning treatment activates mainly the expression of lipid membrane modification enzymes.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号